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In this paper a new class of generalized mixed strategies of players is presented, related 
to the problem of bringing a motion, under a control involving conflict,to a specified set 
under a phase restriction. This class of problems is so wide that it includes strategies 
which give saddle-point type situations in typical differential games. The contents of 
this paper are related to the problems discussed in [l-4] and the discussions are based 
on the extremal construction introduced in [S-7]. 

1. Consider first a motion under control involving conflict described by 

dx/dt = f (t, x, u, v), x it,] = x0 (1-l) 

where x is the n-dimensional phase vector of the system, u and u are the control force 
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vectors of the first and the secor\d player, respectively, and f (t, 5, U, u) is a continuous 
vector function satisfying the Lip&its condition ln z. It is assumed that the players can 

only choose the controls u and u restricted by the condition 

UE p, VEQ (9.2) 
where P and Q are closed and bounded sets in the corresponding vector spaces. 

In introducing the concept of mixed strategies of players and obtaining the motions of 

the system (1.1) generated by these strategies, the proposed definition of the strategies 

corresponds to the following information given to the players: - at any instant t >, to 
the players know the actual position of the game pItI={ 1, z ItI) but have no knowledge 

of the control chosen by the partner at this and subsequent instants. 

It is considered that this class of mixed strategies is sufficiently complete in the sense 
that for any initial time 6 > t, and initial position pO = ito, 2,) of the game, the class 

contains either the strategy of the first player which guarantees that the motion (1.1) 
will converge to a given set at the instant t = 6 and at the same time guarantees that 
a certain prescribed phase restriction will be fulfilled, or the strategy of the second 
player which ensures that all motions(l.1) bounded by the given phase restriction will 

evade the given set within the interval [to, 61 . (This alternative is formulated more 
precisely at the end of this Section). In Sects.2 and 3 below the description of the so- 

called extremal consRuction [S-7] is given, which is used to prove the validity of the 
alternative formulated in this Section. 

This alternative enables the optimal strategies to be constructed which define saddle- 

point qpe situations in the differential games, In particular the findings of this paper 
may be used to study the following types of the game problems of dynamics : 

1. A hom~g game problem with phase restrictions. Here a strategy must be con- 

structed for the first player which brings the motion (1.1) to the given set in the shortest 
possible time ensuring that a certain phase restriction is fulfilled. 

2. A differential game in which the motion is described by Eq. (1.1) and the pay- 

off is given by B 

+r = 9 P, 5 161) + 111, (6 1: ItI) dt 
to 

where ‘F (t, z) and $ (t, 5) are given continuous functions and 4 = 6 (5 [ -1) is the instant 
at which the point p[t] = (t, z[tl) reaches some prescribed set N for the first time. 

3. A differential game with the payoff in the following form: 

y=maxcp(t,zItl;whentogt~<6(GI.ff 

where, as in the previous case, 9, (t, x) is a continuo~ function and + fx [ -1) is the 

instant at which the point p fti = ft. z itI1 reaches the prescribed set N. 

The concepts of mixed strategies of the players may be introduced at this point allow- 
ing the motions of (1.1) corresponding to these strategies to be determined. J.,et u = 

= U (t, 5) be a function defined for t > to and all x which generated a one-to-one 
correspondence between the positions p = ft, X) of the game and the set u (t, X) of 

regular Bore1 measures p (du) [S] normed on P, i.e. p (P) = 1. 
Since p (du) will be the only measures considered here, these will be called simply 

the measures p, (du) on P. 
The function u = U (t, cc) specified above defines the mixed saategy of the first 

player and allows the motions of (1.1) generated by this strategy to be determined as 
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follows. 
kt A be some range set of nonoverlapping semiopen intervals 

[rip Tti+l 1 (i r= 0, 1, 2 ,..‘, To = t*) 

covering the semiopen line [t,, 00) . Then the approximate motion of the system 

(1.1) generated by the mixed strategy TJ =5 lJ (t, Z) of the first player, together with 
the trivial strategy Y, of the second player, and corresponding to the range set A will 

be given by XA it] = XA [t; t,, x* u, v,f 

where 56, It] is an absolutely continuous vector function satisfying the following recur- 

rence relations : 

~EF(t,xA[t];P(d!~;p[zi])) (1.3) 

xA[t*] =xA[%,,] =x*, Idi<t<%i+i (i =O, 1,2, . ..) 

at nearly all t > t, . 

Here 26, [t,] = X* is the initial condition for the motion 

%A [tl = 56. [t; t,, &+, u, v,l 

and E‘ (b, s; p (&A)) is the convex hull of the set of all vectors of the form 

f =\f@, $9 u, VIP (du) 

where If EZ v and p (dI.4; P 1Zij) is a measure on P belonging to the set u (‘ri, XA ITi]). 

Let the concept of generalized motion of the system (1.1) now be introduced. Denote 
by u (A) the quantity given by 

= 69 = SUP, (Cl - %h i=o,1,2, . . . (l-4) 

where T# are the boundary points of the semiopen intervals [zi, z~+~) of the range set 

A , and let the absolutely continuous vector function 

X It1 = X [t; t,, x*, u, V,l 

describe a generalized motion of the system (1.1) satisfying the initial condition 

X [E,] = x, generated by the mixed strategy U = U (t, 5) of the first player togeth- 
er with the trivial strategy V, of the second player, provided that the sequence of mo- 

tions 
ZAk ttl = xAk k t,, xk, u, VT] (k = 1,:2,...) 

exists such that the relation 

‘,irn_xa, [t; t,, xk, U, VT1 = 2 [t; t,, 5*, U, V,l 

also holds on any finite segment It,, t*] ~iformly and that the following conditions 

are fulfilled: lim ff (hk) = 0, lim Xk = X4:, k--+-m 

In the following discussion these generalized motions are simply called the motions 
of the system (1.1). 

Some properties of the set of motions 

x itI = X It; t*, 5*, u, V,l 

may now be noted. Thus, 

I” this set is nonempty, and 
2O the set of motions x [t; t*, x*, U, V,l regarded as a collection of vector 

functions X = X It] defined on some finite interval [t*, t*l is compact in itself 
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( [9], p. 2‘22) and depends on the initial condition CC* semicontinuously from above, rela- 
tive to inclusion. 

From the latter property the following condition holds: if zt -+ 2* as i + w, and 
the sequence of vector functions z It; t,, xi, U, V,l converges uniformly on it,, 
t*] to some vector function 5* [tl, then on the segment [t,, t*] the vector function 
t* ItI coincides with one of the motions z [t; t,, x*, U, V,]. 

In one particular case when the set U (t, 5) consists of a single element. a measure 
c1 (di%f, and does not depend on the position p = { t,x} of the game, the resending 
motions will be denoted by a~ [t] = 5 [t; t,, CC*, p (du), r/r,]. 

In this case the set of motions z [t: t,, z*, U, V,] coincides with the set of solu- 
tions of the following differential equation iu contingencies [10] : 

9 E F (t, z [t]; p (du)), z It*] = 2* (L5) 

The concept of the mixed strategy of the second player is introduced in a similar 
manner. This is represented by a certain function V + V (t, x) (here V (t, IC) denotes 
the sets of regular measures v (dn) normed on Q) , and the motions of the system (1.1) 
corresponding to the strategy V = V (t! x) and the trivial strategy of the first player 

U, ,are defined by z [tl = CC It; t,, z+, U,, VI. The properties of the set r [tl = 

= x It; t,, x,, u,, VI are the same as those of the set z [tl = z It; t*, z,, U, VJ. 
The motions 2 ft; t*, x*, U.,, V,] corresponding to the pair of trivial strategies 

and the motions I ]t; t*, t*, U, V] generated by any two mixed strategies U = 
= U (t, z) and V = V (t, z) will also be utilized ln the discussion. In this case we 
shall regard as a motion z It; t%, x,, U,, V,] any continuous vector function x ItI 
satisfying for almost all t > t, the requirement of inclusion 

dx it1 f dt E F (t, r ttl), 5 it,1 = zs, t> t, 

here F (t, 3) being the convex hull of the set of all vectors of the form f = f (t, x, 
u, v), where u E P, z;~ Q. The motion jl: [E; C,, x*, U, V] is defined in a similar 
manner to that used for obtaining x [t; t, , r,, U, V,] viz., by taking zA ItI to 

the limit. 

Only now the relation (1.3) for %A It1 can be replaced by 

This completes the formal representation of the strategies of the players and the cor- 
responding motions of the system (1.1). 

A brief explanatlon of the concepts introduced is as follows. Let us e.g. find the mo- 
tion x It; t, zt, U, I’], which was introduced above as the limit of a sequence of 

approximate motions zAk [tl = z+It; t*, Q, U, VI, corresponding to piecewise conti- 

nous measures 

CL (du; P hl) E u (s, ~~~h1) and v (dv; p lril) E V(rs, xdk [zi]) for ri < t < ri+r. 

We note that the mixing of the controls u and u , defined over the interval [zi, Zi+l) by 
the measures p (du; p [~&and Y (&I; p [zi]) , respectively, can be performed approxima- 
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rely by mixing the controls FJ and c defined by 

u [tJ = l,(j) when t E (x:j), $‘*)), j 1-r ‘i, . . . . mfi) 

v [t] ;17 I:(~) when E IT?), ~!,s*l)), s = 1, . . ., bi) 

over time. The values of the vectors ~8) and L@) and the system ~nonoverlapping semi- 

open subintervals [rev), ,p)) and [zi , (‘1 -ctfl)) covering the interval {T&, ~i,l) are defined 

by corresponding measures @ (du; JJ [ai]) and Y tdu; JJ hl) , respectively. 
In this way the motion z [t; t*,z*, 11, Vlcan be determined as a limit of certain motions 

of the system (1.1) accomplished in a defined manner by the controls of the first and 

second player mixed over time. It must be assumed, that the second (first) player is not 
aware of the actual method of selection of the semiopen intervals [zr xp))and ~~~~~~*l~) 

although he may have a knowledge of the strategy u (strategy V) of mixing (relation 
between the measures of the semiopen intervals j) (j+l)) and ([T$@, ~Is+l))) and of the 

values of ZL(~) (v(“)) corresponding to the measure 
[z$ , zi 

p (du; P[zij) t u (ti, G?&$ (v (dv; p [z,l)@ @i, +Ac [%I)* 

It follows, therefore, that the mixing of the controls u and u must be independent (in 
the sense assumed in the well-known game situations interpreted on the basis of the theo- 
ry of probability). These assumptions correspond to the character of information described 

above and which are available to the players, i.e. the player is ignorant of the realiza- 

tion 7~ It] or u It] of the controls chosen by his partner at a given instant (and later), and 

only knows the position p [tJ = (t, zc Itf} realized. 
In addition the following may be noted. The set of motions z It; to, z*, U, V,] con- 

tains any motion of the system (1.1) satisfying the condition z I&1 = 5~. which may be 

realized with the strategy u = u (t, z) chosen by the first player together with any 

strategy of the second player. Therefore, when it is stated that a certain condition holds 

for all motions 5 {t; t,, +, U, V,] it means that the strategy U = u (t ) 4 guarantees 
that this condition is satisfied irrespective of any permitted behavior of the partner. 

Similar statement can be made concerning the motions x [t; t,, z*, u,, VI. 
Let us now introduce some notation and formulate the alternative mentioned previ- 

ously, Let z [t] by some motion of the system (1.X) and G a closed set belonging to 
the vector space p = (t, z). Denote by fj (x [ + 1; G) the instant at which the point 

p It1 -:= ft, 5 ftl) f irst reaches the set G and assume that 6 (I f -1; G) = 00 if the 

condition p [t] e G does not hold for any t > to , 
In the following p ({t, ZC>, G) denotes the Euclidean distance between the point 

p = {t, 5) and the set G. The instant at which the inequality p ((t, x It] l, G) > G 
becomes valid for some motion 5 ftl for the first time is denoted by P (‘c [*I; G) , 
and the closed neighborhood E of the set G is denoted by Cc. Therefore GE = {p = 

= g-t q: gF=G, llqilS&}. 
Here and in the followng 11 q jj d enotes the Euclidean norm of the vector q,. 
The following statement expresses the basic result of this paper. 

The Alternative. Let pO = {tot q,} be the initial position of the game, M 
and f) some closed sets in the vector space p = {t, x) and 6 >, to a finite number. 
Then one of the following two statements is true :-either 

a) there exists a mixed strategy u = U (& x) of the first player such that the 
relations 
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6 (5 I*l; M) se, (4 X bl}Ef, when to<t<6(x[-j; M) 

hold for any motion 
5 [tl = 5 It; to, 50, u, V,l 

i.e. for the motion 2 [t] = z [t; to, x0, U, V,] the condition {t, 5 It]) E M wilI 
become valid not later than at the instant 6, and the phase restriction {t, x [t] ) e D 

applies throughout the motion of the point p ftl = {t, x ItI} from pe = (so, zo} to 
the set M, or 

b) there exists a mixed strategy V = V (t, z) of the second player and a positive 

number e > 0 such that the condition 

p ((6 5 It]), At) > E whent,<t<min (6,~~(3:[.f;D)} 

holds for any motion x [tl = x It; to, x0, U,, Vl ,i.e. no motions x [tl = 5 It; to, 
50, u,, v] exist satisfying the condition {t, z It] > E L)” and reaching M’ not later 
than at the instant 6. 

2. Since the approach to the problems investigated in this paper is based on the ex- 
tremal Construction used in [S-7]. the basic elements of this construction should be 
defined. 

Definition 2.1. Let there be a one-to-one correspondence between all values 

of t belonging to some interval [to, q] in the phase space {x} and nonemp~ sets W (t). 

The collection of sets W (t) (to < t < q) shall be called u-stable in &f if for any 

t, E It,, q), z* E W (t.J and 6 E (0, q - t,l a motions [tl = r It; t,, z*:, 
U,, Y (&)I can be found for any value of the measure Y (du) , satisfying either the 
condition that x [t, 4- 61 E W (t* + ti), or the condition that {z, x [rl } E iki 

for some tE It+, f, + 61. 
Definition 2.2. Let a closed set G be defined in the vector space p = {t, x} , 

and a system of nonempty closed sets W (&) (to < t < ?j) be given. This collection 

will be called u-stable in G, if for any t, E It,, TV), t* E W (t*) and 6 E (0, 
9- t,f a motion .z It] = II: It; t,, x8$ p (&J), V,lcan be found for any value of 
the measure l.t (&A) satisfying either the inclusion 2 It, $ 61 E W (t* $ 6) or the 

condition {T, x [T 1) E G for some z 6% ft,, & + 61. 
Let a collection of closed sets W (t) (to < t < 6) be given in the space (x} , and 

assume that these sets can, in general, be empty for some t E [to, 61. Now introduce 

the notion of a mixed strategy UC’) = U@ (t, z) of the first player extremal to this 
collection of sets. Denote by q* (t, x, s) the quantity given by 

7/)* (t, X, s) = min max 
v (do) P (du) f S s’f (t, z, u, u) I” (du) v (dvf = 

= max min 
ss 

s’f (t, r’, 26, V) p (du) Y (dv) (2.1) 
or, (W v (do) 

where s is an n-dimensional vector and where the prime denotes transposition, and cal- 

culate the maximum and the minimum over all possible regular Bore1 measures lk. (du) 
and v {dv) normed on P and Q, respectively, The validity of (2.1) has been proved 

previously e. g. in pl], p. 95. let us assume first that at the point t E [to, Sl under 
consideration the set W (t) is nonempty and let S (t, LC) denote the set of all vectors 
of the form so = w” (x) - x where w0 (z) are the points of the set w (t) nearest to 
2 . (If x E W (t), the set S (t, z) obviously consists of a single null vector). when 
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the set w (t) is nonempty, UC) (t, 5) is defined as aggregate of all measures p0 (du) 
satisfying the condition 

min s”‘f (t, 3’, U, v) p” (au) v (du) = 9” (f, z, SC‘) (2.2) 
y (dvf 

for at least one vector So from S (t, z) . 
The existence of such measures follows from the relation (2.1). If however the set 

w (t) is empty for some t EZ It,, 6 1 , then it must be assumed that UC’) (t, 2) is com- 

posed, for any value of 5, of all possible regular Bore1 measures p (~~) normed on P. 
The function UC” = U@) (t, z) is thus defined for all x and for t E [to, jj] ; it 

also satisfies the condition of weak semicontinuity in 5. 

Let the mixed strategy of the first player, as given by the function Uce)= U(c) (t, x), 

be extremal to the system of sets W (t) (to < t < 6). 

The mixed strategy of the second player V@) = V@) (t, S) , extremal to some system 

of closed sets W (t) (to < t < 6) I is defined in a similar manner. When W (t) is 
nonempo/, the set V(e) (t, x) is composed of the measures v” (&_I) satisfying the con- 

the condition 
Fyi; 8’ f (4 5, u, v) p (du) v” (dv) = $* (f, 2, SO) (2.3) 

which must hold for at least one vector S’ from S (t, x), The quantity ++ (t, z, s) is 

given here by 
$* (t, X, s) = max min 

ss 
s’f (t, x, 24, v) i;l (du) v (dv) = 

Y (dv) P (du) 

= min max 
1s 

s’f (t, x, 7.4, v) p (dlh) v (du) 
)I (du) ” w> 

(2.4) 

where as before ~1 (du) and Y (dv) denote all possible regular Bore1 measures normed 
on P and Q , respectively. 

The following two statements are valid. 

Lemma 2.1. If x0 E w (to) and the collection of nonempty closed sets W (t) 
(i$ < t & q) is u-stable in M, then the mixed strategy of the first player U@) = 

= U(e) (t, 5) extremai to the system of sets w (t) (lo & t ~2 q) ensures that the 

condition z It1 E W (t) when & G t < min (q, 6 (x I-1; n/r)} (2.5) 

holds for any motion z [t] - 2 [t; to, x0, UW, V,] . 
Lemma 2.2. If the collection of nonempty closed sets w (t) (to S t < q) is 

v-stable in G and x0 E @’ (to), then the mixed strategy of the second player V(e) = 

= We) (t, z) extremal to the system of sets W (t) (t,, < t S 11) ensures that the 

condition z It1 E W (t) when to < t < min (11, 6 (z 1.1; G)} 
holds for any motion 2 it] = t it; to, zo, U,, WI. 

Proof of Lemma 2. 1. Let 2 It1 = 5 It; t,, +, U@), V,] be any motion corre- 
sponding to the strategies u(@ and V,. It will be shown that condition (2.5) holds for 
this motion, Let zAk ltl (to d t < 11) denote a sequence of approximate motions whose 
limit is the generalized motion under consideration. i. e. 

ZAk itf = 2~1( It; to, xk, uce’, v,l (to < t <<rl) 

Moreover, 
;k IS (A,) = 0, ii% zc = 20, lim ( max 

Jr-W? k&gs 
11% [tl - “4 k[tlII) = 0 (2.6) 

It can be easily shown that the requirement (2.5) holds for the motion z [t] under 
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consideration is equivalent to the statement that for any arbitrarily small cc > 0 a num- 
ber K can be found such that the relation 

zAI( ]t]Ev (t) when ro < t d min {?-I, 6 (z+[‘]; Ma’)) (2.7) 

holds for all k > K for the motions zAk [t] . Consequently the proof of Lemma 2.1 is 
reduced to a proof of the above assertion. Let us introduce the quantity ek [t] = p (sa,[ t], 

W (t)), remembeiing that p (5, w) is the distance between the point 5 and the set W. 

It will be shown that the quantity ek [t] at sufficiently large k , doesn’t exceed any pre- 

determined number a > 0 for all tGto, min 111, 6 (zAk l-1; Ma)), , i. e. condition (2.7) 

holds. 
Thus, let us see how the quantity &k [t] varies when zik) < t < $i, T!“) < TV where 

[rjk’, Vi:\) ar e semi-intervals of the range set A,.The motion zA1, [t] for t E ]zi (C), #) 

is given by 
. 

drAk It] 

dt 
= f’“‘[t], f@) [t] E F (t, zAk [t]; ~1” (du; p [zi’)])) 

p” (du; p [I]) E U(‘) (T(;‘, ‘L zAk b’;‘]) 

i. e. the measure p” (du; p [z(i) ]) satisfies the condition (2.2) in which the vector so is 

given by a” = s” [$‘I = UP - ZAk [Zi (‘0 1 (2.8) 

where UP is a certain point of the aggregate of points nearest to zAk IT\‘)] and belonging 

to the set W (I-!~)). Assuming now that the inequality 

sk by = 1 w” - zAk [Zj"']ll = I$' [Ti"] 11 > 0 (2.9) 

holds, let v. (dv) be the measure on Q conveying the minimum value to (2.2) for 
t=z!“), z= z ~~ [T$')] and so = so [z!,‘)], i. e. 

ss 
SO’ [&] f (tik), 5 1 Ak [Z\“], u, a) p” (du; p [Ti”‘]) Yo (dv) = q* (t(j’), “A k [Tik’], So [T!,k’]) > 

> 
ss 

qtyq f (TjQ, xAk [ri”], u, u) P Vu) Yo (dv) (2.10) 

Using the condition of u-stabilitv of the system of sets W (t) (to < t Q q) , and assum- 
ing first that the point p [t] = {t, z ItI} does not reach the set M when t E [vi’), vi:;] 

for any motion 5 [t] = 5 It; Z\k): w”, U,, v. (dv)] , we find, that a motion z* ]tl = z ]t; 
v(k) ru” I’ ’ U,, v. (du)] exists such that 

5 * [z!k’] E w (r$, 1+1 
(2.11) 

This motion is given by 

dx, It1 
dt= f, [tl, z+ IT!‘)] = w’, t f, [tl = F (t, x* [tl; vo W) 

The inequality 

ek ]#] = o @Al, [v;;;], w (vlti) d II =Ak hjf$ - 5* b(&l 11 (2.12) 

follows from (2.11). 

Let us secondly estimate the distance between the points z& ]r!ti] and z+ ]z!$]. 
Here the following relations shall be used which follow from the fact that the Lipshits 

condition holds with respect to x for the right-hand side of (1.1) 

F (t, z+ Ax; p (W) E FP (4 z; P (du)) b = J. II AZ II 
F (t, z + As; Y (dv)) E FB (t, t, v (dv)) ( (h = conat > 0) ) 

(2.13) 

where Fadenotes the fi-neighborhood of the set F . The relations (2.13) hold for any 
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measures p (du) and V-‘(dv) for all 1 and z. 

using (2.13), and taking into account the fact that the sets F (t, k; p (du)) and F (t, 

x; v (dv)) are convex and depend continuously on t , we obtain the following expressions : 

ZAk [T$$ = cc+ [zy’] + psy + 0 (6;“)) (2.14) 

2* [T$\] = WD + f*sik’ + 0 (s{k)) 
where 

61”) = T$; - zik), f’“’ E F @I”), zA [zi’)]; p” (du; p [zik’J)) 

f, E F (rp, looKY, (dv)) (2.15) 

The symbol o (6) denotes a higher order infinitesimal in 6. By (2.8), (2.9) and 

(2.12) relations (2.14) yield the following estimate : 

8; [Z$),] < 11 X& ,[T$\] - z* [?$I 11” = (1 so [tpl p + 26i%“’ [T;“‘l (i, - f ‘“‘) + 0 (sp) (z.:e) 

Finally the scalar product so’ [zik’l (f, - PC’) will be estimated. From (2.13) and 

(2.15) it follows that a vector f* E F (rik)q z LiI( [Tik’l; V. (do)) exists, Satisfying the ine- 

quality II f* - I* II d k II UT’ - =Ak [dtk)] 1) = hlls’ [~~~‘]llI. Therefore the relation 

is valid. $0’ [+f’] f, <SO’ py1 f* + All 8” [zpl[p (2.17) 

At this stage it should be noted that for any vector f E F (t, 2; p (du)) (f E F (L 2; 
v (dv))) a measure v (do) (p (du)) can be chosen such that the equation 

holds. f = jlf (t, z, IL. 4 p (du) y (W 

When this is taken into account, the scalar products so’ [Z(ik) I r’“’ and s*’ [x$~‘] f* can 
be written in the form 

6or [,(H] f’“’ = 
cs 

SO’ [TW] j (T$? “A [$‘I, 
* k 

u, V) CL” (dw P Is!“l) ~1 b-W 
. 

sir pff’] f* =\i so’ pi”‘] f (z;~), xAk [z$“l, u, v) P* Vu) vo (W 
. 

where CL, (du) and V, (du) are some measures on P and Q ,respectively. Since the meas- 
ure p-O (drc; p [z!,‘)]) belongs to the set tie) (Tfk’t zAk [Tik)l), i. e. it satisfies the condition 
(2.2). while the measure v0 (du) is given by (2.10). the following inequalities hold : 

s”’ [ tp J p > I#* (T(,L), xA k [T(f)], so [Tc’f,,l) 

50’ [TP’] /* < I$]+ (Ty, ZA [qq, so [r,(q) 1 k 

From (2.1’7) the latter yields the estimate 

SO’ [Q’] (f+ - f(C) ) < h/s0 [ryq p = a&2, [tp 1 

Substituting (2.18) into (2.16) we obtain the inequality 

e2, [?it;] < e; [+‘I (1 + 26ik’ h) + 0 @I) 

The above discussion clearly shows that the ratio o (8:“)) / 61” 

(2.18) 

which depends, in gene- 
ral,on the position p [7ik)] = {TI k), 2~k [z(,‘)]} of the game, tends to zero as 61”) + 0 
uniformly in P E I‘,where I’ is an arbitrary bounded region. 

Furthermore, this statement remains valid even when $1; is replaced by any t from 
the interval [2ik), T$!]. Thus we have 

E; [t] <e; [Zi”‘] (1 + 26, lk) h) + o (6ik’) when t E [zi tk), T$] (2.19) 
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We note that this inequality is obtained on the basis of the assumption that the 

tion {t, 5 111) q$ 1~ when t E [+rik), vg$ is satisfied for any motion 2 ftI= 2 [r; 

wO, u,, vo &)I. 

957 

condi- 

+? 

Two cases are possible: either the latter assumption holds for the approximate motion 
z,+lrl Over any lnteival [?‘i (k), vi:!), q) < rl, or there exist some interval [a$“* ~$1, 

z!~) < q when this assumption breaks down for the first time. In this latter case, however, 

i: may be easily shown that the following relation holds for some t, E [SF), r/ii) 

0* d rl) 9 (Cr*? =A k [ tr]), itf) < Ek [Tjk’] + W @sjk’) (2.20) 

0 (6) --c 0 as 640 

and the estimate (2.19) remains valid for all i = 0, ‘1, . . . . j - 1. 
Let an arbitrary number a > 0 now be chosen. Using the estimate (2.19) and taking 

into account the fact that ;E &k [to] = 0 which by virtue of (2.6) follows from the 

condition z,, E W (to), it can be proved that a number K > 0 exists such that for all 
k > Ii the inequality 

ak ($1 \<%& as to < t < min @I, z$‘$ (2.211 

holds. 
0 (6jk)) < 0 (o (Ak)f< ‘/Et 

Consequently, from the definition of ak [t] and by virtue of (2.20). condition (2.7) 

holds. This proves the validity of the statement made at the beginning of this proof and 

thus completes the proof of Lemma 2.1. 

Le m ma 2. 2 is proved in a similar fashion. 

3. Let us now obtain a system of sets W (t) maximal in some particular sense, pos- 

sessing the property of u-stability in &f. The study of such a system will establish the 
validity of the alternative expressed in Sect. 1. 

Let x (z [ .]; z, 6) denote a functional defined on continuous vector functions t [t] 

(7 < t < 6) given by 

x (z I*]; 2, S) = mint p ({t, 2 it]}, M) + maxt p ({t, z}, D) (3.1) 
where the minimum and the maximum are computed over ‘t < t < 6 and z & t 6 

< min (6, 6 (5 1 *I; AZ)}, respectively. 
We note that the functional x (3 1.1; z, 61 is lower semicontinuous, i. e. for any con- 

tinuous vector function z* [t] (z < t & zf) and for any E > 0 , values of 6 > 0 can 
be found such that the inequalitv 

x(51*l;Z,~)~3C(TCgIbl;7,3)-E 

holds for any vector function 2 It] (7 < t < it) satisfying the condition 

m~xtllW1 -z*ItlU<& @Gtd@) 
Definition 3.1. We say that the set M is ~iti~ally absorbed by L) from the 

position p* = (t*, w*) and the instant %! if for any mixed strategyv = V (t, z) of 
the second player,a motion z [tl = z It; t*, w,, U,, VI can be found such that 

x (X (91; t*, 6) = 0 (3.2) 

i.e. 6 (z I.); 1~) sg@ and {t, cc [tl} E I) for all t E It,,-3 (z i-1; M)l . 
Let W (t, S) denote the set of all points w such that the set ikf is positionally absorbed 

by D from the position p = {t, w} at the instant 6. 
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Let us consider some properties of the sets w‘ (t, 6). First the following auxilliary 
statement will be proved, 

Lemma 3.1. Let p* = it*, w&] be some position of the game. where t, <@ 

and (t8, w+} E D. If both a measure V* (C&J) on Q and an instant t* E it,, 61 
exist such that the conditions 

p ({t, 4tl); M) >0 when 1 E it,, t*l (3.3) 

R: [P] @ w(t*.e) (3-4) 

hold for any motion 5 [t] = z It; t,, UP+, U,, v* (dvjl , then the set w (t*, 0) 
does not contain the point wI. 

Proof. From the definition of the set W (t, 9) it may be inferred that the validity 
of Lemma 3.1 will be established if it can be proved that a mixed strategy V, = V, (t, 

I) of the second player exists such that the inequality 

x (5 [*I; t*, 6) > 0 (3.5) 

holds for any motion z It] = f [t; t,, we, U,, V,]. 
The existence of this mixed strategy V, is proved as follows. First, we assume that 

some system of sets W, (t) (t,,, < t < 6) possessing the properties set forth below exists. 
Then we shall show that in this case a mixed strategy of the second player extremal to 

such a system secures the validiq of the inequality (3.5). Finally, we shall show that 
when the conditions of Lemma 3.1 are satisfied, a system of sets w, (t) (t* < t < 6) 

possessing the required properties exists. 
Thus, we assume that there exists a system of sets W, (t) possessing the following pro- 

perties. 
la, The sets w, (t) are nonempty and closed for t, d t < r, where %I is a number 

which satisfies the inequality n < 6 . If n < 6, the equality 

P ((21, m); f?)==E>O (3.6) 

holds for any point w E W, (11) . 

2”. The inequality 
P (It, wu), iM) > s > 0 (3.7) 

holds for any point w E W, ft)(t* < t +Ci q). 

3”. The point OJ,, belongs to the set W, (t*) . 

4”. The system of sets W, (t) (t* q t g ~1) is u-stable in G , where G is an aggre- 
gate of points satisfying the condition 

P ({t, 21, D) > a > 0 

We shall show that the inequa~~ Y. (z 1.1; t,, 6) >/ e > 0 holds for any motion 
z Irl = I It; t,, wUtr U,, V@)] . (Here P”’ = P” 6, 4 is the mixed strategy of the second 

player extremal to the system of sets W, (t) (t* < t < fit) . 

Indeed, by virtue of Lemma 2.2, the condition 

s [tl E w, Oh t, < t d min {qs 2) (z f-1; Gt) (3.8) 

holds for any motion z [t] = 2 [t; t,, wu,, U,, tie)]. 
Let us assume that min {?I, 6 (s 1. J; G)+ 6, then (3.8) and (3.7) yield the inequality 

P (ftt 5 [tll, W >, 8 > 0 for t, < t < 6 (3.9) 

If, on the other hand, 5 = min {q, 6 (5 [ .I; G)} < 6, then by virtue of properties 1”. 
2O and 4’ from the condition (3.8) we have the following relations: 
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P &, 3 ra, M) >, e > 0 for t & ft*, %I 

P (I%, x [%I,, D) = e > 0 (3.10) 

Thus either (3.9) or (3.10) holds for any motion z [tl = z Et; t,, w*, U,, v(‘)] ; there- 
fore the inequality 

xbl*l; t.7 @)>e>O (3.11) 
holds for any motion z [t] = z [t, t,, w*, U,, V@)] . 

It may also be shown that under the conditions of lemma 3.1 a system of sets W, (t) 

(t* < t < 9) may be constructed with the properties 1’ - 4’ listed above. 

let X be the set of points z It*] = x It*, t,, w,, u,, V* (du)] corresponding to every 
possible motions z It] = z [t; t*, w*,U+, Y* (du)]. The set X is bounded, closed, and by 
virtue of (3.4) the intersection of X and IV (P, 6) is empty. This means that for any 

point w & X, a mixed strategy v, = VW (t, 2) of the second player can be found such 
that the inequality x (5 ]. 1; t*, Q) > U will hold for any motion 5 Lt] = $1; t*, w, W,, 

VW]. The set of the vector functions 2 It; t*, w, U,, V,l will be compact in itself, 
and the functional x(z ].I; t*, 9) will be lower semicontinnous in x ].I. A number 

r.r, (w) > 0 therefore exists such that the inequality 

x (I [*I; t*, e&= cc (4 > 0 (3.12) 

holds for all motions z It] = z It; t+, W, U,, V,], 

Since the set of motions z [t; t*, w, U,, V] depends on the initial condition t [t*j= w 
semicontinuously from above with respect to inclusion, from (3.12) it follows that the 

relation x (z I-1; t*, 6) >, ‘lzct (4 > 0 

holds for all points z* satisfying the inequality 1 x* - w I< r(w) (where r(w). is a positive 

number) and for any motion z It] = z It; t*, z*, u,, v,]. 
A set of spheres 

R(w, r!~))~(~:Il~-wII<r(w), r(w)>O] 

covers the closed bounded set X, and from this cover we can select a finite subset 

Ri = R (Wi, ~(~i))=z~~:112-wmtll~r(wui)}. 

XcUJ?$(i=i,...,m) (3.13) 

In the following the strategies VW =V, (t, z) corresponding to the poiuts wS (f = i, . . . . 

. ..I m) will be denoted simply by Vi = Vi (t, 2). The aggregate of all motions rltl = 
= 2 [t; t*, t+, u,, Vi1 (t* Q t d @) corresponding to all pcssible initial conditions 
z ]t*] = 9 E Ri will be denoted by Xift*, fP] . 

The symbol X It*, Sl will denote the set of all vector fnnctions z [t) (t* < t < 6) 
defined by XIt*r~]= U xi [t*te] (i=l,...,m) (3.14) 

The set of motions z[t; t*, z*, U,, Vi] (t* < t < 6, i = 1, . . . . m) is compact in itself 
and depends on Z+ semicontinuously from above with respect to inclusion, therefore the 

closure property of the sets Rs implies that the sets Xi It*, 61 and X [t*, 61 are compact 

in themselves. From the structure of these sets it follows that the inequality 

x(z[.]; t+, 6) >,a* >o (3.15) 

holds for any vector function z It] (t* ;$ t < 6) belonging to the set X ft*, 61. Here 
a* = min(%a (wi)] for i = 1, . . . . n. 

Let X it,, 61 denote a set of all ~tinuous vector functions z [t] (t* < t < 8) which 
coincide with some of the motions I [t; t,, w+, U,, Y* (dv)] when t, < t Q t* and 
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belong to the set X It*, S] when t* < t < 6 From (3.3) and (3,5) it follows that the 
inequality 

holds for any vector function z [t] (t* < t < 8) belonging to the set X [t,, 61. 

Using the fact that the set X It,, 6) is compact in itself together with the latter ine- 
quality, it may be deduced that at least one of the following two relations hold for any 

vector function 2 [tl (t* \< t < fb) belonging to the set X [t,, 61 : 

maxf P ((6 5 Ml, D) > E for t* 4 t Q min {ft, 6 (2 I.]; M’)} (3.16) 

mint P (tt, 2 ItI), M) > e for t, < t < 6 (3.17) 

where a > 0 is a certain positive number. 
Let W, (T) be a set of points belonging to the phase space Cs) defined as follows: 

a point w belongs to the set W, (r) if and only if a vector function z it] (t* g t < 6) 
exists, belonging to the set X [t*$ #] and satisfying the conditions 

z[2]= w, maxp({t, zit]}, r;t)<e for t,\(t<r (3.18) 

The system of sets W, ($5) (t* < z d 6) so ~ns~ucted may be shown to possess the 

properties 1’ - 4” listed above. Let denote by 9 the upper bound of the numbers IF d @ 
for which the sets W, (T) are nonempty, In this case the set w, (n), as well as any of the 

sets W, (2) for t, d z < rh may be shown to be nonempty. 

Indeed, let rk (k = 1, 2, . ..) be a sequence of numbers converging from the left to 
? and let the set W, (zk) (k = 1, it...) be nonempty, 

Consider a certain sequence of points wk 

Wk E w (r!J (k = 1, 2, . ..) 

Each point wkhas a corresponding vector function zk [t] (t* < t 6 6) belonging to 

the set X It,, S] and satisfying the condition 

5k ]rJJ = ‘l’k, maxi P ({t, 5k It]), D) 6 e for t, d t < Tk (3.19) 

Out of the sequence vector functions zk [t] (t* < t < 6) now choose a subsequence con- 
verging to some vector function z* It] (t* < t < it) also belonging to the set X [t,, 61, 

Taking into account the fact that rtk -* ? as k -+ co, from (3.19) we obtain 

z* ISI = w*, maxfp ({t, z* [tl), D) < e for t*<tfrl 

Thusapoint w*= t* In] belonging to the set W, (q) exists,showing that W, (9) is 
therefore nonempty. It may easily be shown that any set W, (r) for t* < ‘F < ?J will also 
be nonempty, Closure of the sets W, (T) (t, Q T < q) can be verified using arguments 
similar to those employed above to show that W, (q) is nonempty. When 9 < 6, the 
definition of 11 as the largest number of those z for which W(z) is nonempty yields the 

fo1lowing re1ation: maxf p (ft, 5 [tff, D) = p (In, 5 IV]}, D) = e, t, Q t Q q 

where t [t] (t* < t < 6) are the elements of X It*, 61 which, by (3.18). correspond to 
the points IU E W, (q). The last equation therefore implies the correctness of (3.6) 
which verifies the condition 1’. 

Condition 2’ follows directly from (3.16) - (3.18). The inclusion w* E W, (t*) fol- 
lows from the condition ft*, 5 ]t,]) E D and from the relation 5 [t,] = w* which obvi- 

ously holds for all elements of the set X it,, SJ. 
To confirm that condition 4” holds for the system of sets W, (z) constructed we assume 

that u, is any point belonging to the set W, (z) (t* < z < q), p* (du) is a certain measure 
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on P, and S is a number satisfying the condition 0 < 6 (II - r. It can be shown that 

a motion z* [tl = 5 ft; z, UP, lh* (&), v,], (a < t < r + 61 exists for which one of the 
following two conditions holds : 

x* b +% E w, (z + S) (3.20) 
mas p ({t, 5* [tlj, D) >, 8 for zgl;rgr+6 (3.21) 

Let r* ffl‘denote a vector function belonging to X [t,, 61 and corresponding, by virtue 

of (3.18), to the point IQ, i.e. satisfying the conditions 

maxt p (ft, z 141, L)) G g for t* < t G ‘c 
r* [r] = W (3.22) 

It can be shown that amongst the motions z [t; z, W, p* (do), V,] such a motion x* [t] 

exists that the continuous vector function 

is an element of the set X [t,, 61. Then, in this case for the motion denoted by Z* [t] = 

= z [t: T, IU, IL* (du), V,] , one of the conditions (3.20) and (3.21) must hold. 
Indeed, if maxt p ({t, z* itl1, D) < e for T Q t < T + 6, then by (3.22) and the defi- 

nition of the set W, !tf either the inclusion (3.20) or the inequality (3.21) holds. 
The fourth property ofthe family ofsets FV* (t) (t, < t < q) is thus verified and this 

completes the proof of Lemma 3.1. 

Lemma 3.2. Every set w (t, 6) (t, < t < 6) is closed, The sets W (t, 6) 
(to < t < 6) satisfy the inclusions 

w (t, G) c L)* (tj, P)* (t) n M* ft) c 7-v (8, 6) (3.23) 
Here D* (t) and M* (t) are closed sets in the space (I) and are defined by 

P (t) = (5: {t, x} E D}, A!?* (t) = (z : (t, 3) E N) 

The validity of inclusions (3.23) follow directly from the Definition 3.1 and hence 
it only remains to show that the set W (t, 8) is closed. Let us assume that the point W+ 

does not belong to the set W (t*, 6) (t* E It,, s]). This means that a mixed strategy 
of the second player V, = V, (t, sf exists for which the inequality x (z I.]; t*, @,f> 0 
holds for any motion z It] = I lt; &,, w*, u,,, V,l. 

The set of vector functions z It; t,, w*, U,, V,] (t* Q t < 6). compact in itself, 
depends on the initial condition w*, semicontinuously from above with respect to inclu- 

sion, and the functi‘onal x (z [ -1; t,, 6) is lower semicontinuous; therefore B > 0 exists 
such that the inequality 1c (z I.]; t*, 4t) > 0 holds for any motion z It; t+, w, U,, VJ 
where 11 w - we 16 e. Consequently a e-neighborhood R (we, e) (e > 0) can be found 
for any point w* & W (t*, 6) such that R (w*, e) n W (t*, @) = #, i.e. the comple- 
ment of the set W (tL, ti) is open and hence the set W (t*, 6) is closed thus proving 
Lemma 3.2. 

Let us denote, as before, a closed sphere of radius r, with its center at the point zo, by 

R (%:ol r) . The following statement holds. 
Lemma 3.3. ff z. E %‘(t,, e), then for any r > 0 a function tl (r) (to < 

< q (r) < 6) may be found for which the following conditions hold : 
1) every one of the sets IV (t, e) fl R (x0, r) is nonempty when to ,( t < q (r) ; 
2) either 

P(So, w (T) (4% 6)) = r 
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w (9(& fJ) n l-l bo, 4 c Iv* (ri (r)) = (5: (rl (4, 5) E M) 
3) the system of sets w (t, 6) (i!,, < t < ‘tJ (r)) is U-stable in M. 

Proof, Let T, be the upper bound of all r satisfying 

r < 6, w @, 6) n R (%, r) # 45 for t E It,, ~1 

The set of these numbers T is nonempty,since T = to satisfies the above requirements. 
We shall show that Q may be taken as n (f) , i.e. the number t, satisfies the Conditions 

(1) - (3). 
First it is necessary to confirm that Condition (1) holds. For this purpose it is sufficient 

to show that the set W (I!,, 6) 17 R (q,, r) is nonempty. Let rk (k = 1, 2, . ..) be a 

sequence of numbers converging to r* from the left. Every set W (Q, 6) f-j R (+, r) (k =I 
= 1, 2, *..) is nonempty and the sets are all equally restricted, therefore a sequence of 

points ldkr wk e W (Tkt 6) fl R (50, r) (k = 1, 2, . ..I can be selected which will con- 
verge to’some point w+. 

Obviously w, E R (q, r), it will be shown that w* e W (.t*, 6). Assume the opposite 
is true, i. e. w* & W (T,, 9). Then by Lemma 3.2 it follows that e > 0 exists such 
that 

R (w*, e) n w k, *I = do (3.W 
holds. 

Since the points pk ={tkt WA? belong to the set D (see (3.23)). the closure of D 
implies that 

IT*, “*)>D (3.25) 

From (3,24),(3,25) and (3.23) it follows that the point p* = IT*, LO’*) cannot belong 

to the set M. Therefore the closure of M implies that 

p (V+* w*L MI > 0 (3.26) 

Let Y (dv) be some measure on Q. From (3.24) and (3.26) it follows that for suffici- 
ently large k the conditions 

P (($7 2 I#, M > 0 for t E [Tk, %$ 

e [$*I E R (t@*, e), = &I e w (r*t 6) 

hold for any motion 2 [t] = 2 [t; rk, wk, U,, Y &)I . Therefore, by Lemma 3.1, the 
relation wk e W (*k, 6) holds for sufficiently large k _ The contradiction obtained 
proves the validity of the inclusion 

“* E w (T,, 6) n R b,, 4 
Consequently Condition (1) holds for the number z* = il fr). 
We shall now verify that Condition (2) is satisfied. Again assume the opposite, i.e. 

suppose that a point w+ E W (T*, 6) f7 R ( 50, r} exists for which the relations 

II w* - 80 II < 7-7 ~‘t e M W 

hold simult~eo~ly and the second of these includes the case when the set M (z,) is 
empty. From the definition of the number T, a sequence of numbers tk converging to 

z* from the right exists such that the sets W (tk, @) n R (z,, r) (k = 1, 2, . ..) are empty. 
Thus the following relations may be written 

tk > % lim t = z*, k mk w (tk, 8) n R 6% d = f$ 

II w* - 50 II < f-9 P (IL we), Ml > 0 
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let Y (dv) be some measure on 0 . Then the above relations imply that for sufficiently 
large k the conditions 

P (tt, 2 [tl,, M) > 0 for t E ET*, +J 

llz [tk] - 20 II G rr i.e. 2 [tkl e W Ok, 6) 

hold for any motion z [t] = c [t; T*, u*, u,, v (du)] . 
Consequently, by lemma 3.1, w* 4 W (z*, 6) which contradicts the assumption. 

This contradiction proves that Condition (2) is satisfied for z, = ,rl (r). 

This leaves only Condition (3) to be proved. Again assume that it does not hold, i. e. 

that numbers t, E It,, r*), 6 E (0, ‘F, - t,l, a point mu+ E W (t*, 6)and some measure 
v* (dv) exist such that the relations 

P (it, = idI, M) > 0 for t, < t Q f, + 6 (3.27) 

2 It, + 61 e w (t* + 6, 6) 

hold for any motion I [t] = z [t; t,, we, U,, Y* (&)I. By lemma 3.1, from (3.27) it 
follows at once that w* eG W (t*, 6). This contradiction proves that Condition (3) holds. 

Setting TV (r) = v, we find that T, satisfies Conditions (1) - (3) formulated in lemma 
3.3, thus proving the latter. 

lemmas 3.2 and 3.3 may now be used to prove the following theorem, from which 

the alternative stated at the end of Sect. 1 immediately follows. 

Theorem 3.1. If azs E W (to, S),then the mixed strategy of the first player 
UC’) = U(e) (t, z) exuemal to the system of sets W (t, 8) (to < t < 8) guarantees 
that the conditions 

@ (r [*I; M) G 6, (4 x Itl} E D for t E [to, 6 (2 [e]; M)] 

are fulfilled for any motion 2 It] = 2: ft; to, x0, We), $‘,I. 
If on the other hand x0 e w ( to, f.b), then such a positive number E > 0 and such 

a mixed strategy of the second player V, = V, (t, X) both exist, that the condition 

{t, 5 [tl} EjC MC for to < t < min (6, zL (z [+I; D)) 

will hold for any motion 5 [t] = x [t; to, zO, U,, V,]. 
Here ‘t’ (xl ]* 1; D) denotes the instant at which the relation p ({& 5 [d}, D) = E 

first becomes valid. 
Proof. Let x0 E W (to, 6) and let a sufficiently large number r be chosen such 

that the condition 
maxt I1 2 14 - ~oll<r for to<ft# 

(3.28) 

holds for any motion z [t] = t [t; t,, s,,, u,, v,] . 
By Lemma 3.3 we can find a number q (r) E ft,, 81 corresponding to r which will 

satisfy Conditions (1) - (3) of this Lemma, 

Now consider a system of sets W (t, 6) (to < t < q (r)) which, by virtue of lemmas 
3.2 and 3.3, satisfies all the conditions of lemma 2.1. By Lemma 2.1, the relation 

2 ItI E W k6) for to < t < min (n (r), 6 (X I.]; M)} (3.29) 

holds for any motion z [tl = x [t; to, so, ~(~1, v,] . 
We shall show that 6 (5 [*I; M) < TV (r). Indeed, if p (20, W (q (r), 6)) = r (see 

Condition (2) of Lemma 3.3), by (3.28) and (3.29) the following strict inequality 
6 (z f -1; M1 < q (r) will hold ; if. on the other hand, the relations 

I+’ (rl (r),*) fl R (zo, r) c M*+ (r)) and nlin (6 (2 I-1; MI, q Q-1) = rt (4 

are valid, then by (3.28) and (3.29) the inclusion 
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2 h (41 E W (q (r), 6) fl R (~0, r) C M* (rl (r)) 
follows, i.e. in this case 6 (z 1.1; M) = r~ (r). It follows, therefore, that the inequality 

6 (5 [ * 1; M) d tl (r.) < 6 holds for any motion z [t] = z [t; to, I,,, tie), V,] . The phase 
restriction that {t, 5 [tl$ E D for all t E !to, 8 (z [. 1; M)] now follows from (3.29) and 

from the inclusion W (t, 6) C D* (t) (see Lemma 3.2). This proves the first statement 

of Theorem 3.1). 

Let now zo ~5 W (to,6).The definition of the set W (t, 6) now implies that a mixed 
strategy of the second player Y, = V, (t, I) exists such that the inequality 

x(zI.1; to,91>0 (3.30) 

holds for any motion z [t] = z ]t; tO,~o, U,, V,]. Since the set of motions z It; to, 50, U,, 

V,l is compact in itself, (3.30) implies that a positive number E > 0 exists such that 

the relation {t, z [t]} ek 44’ for all to < t < min {I?, rt (z [.I; D)} holds for any mo- 
tion z [t] = 2 it; to. “I”, U,, V,] . This proves the second statement of Theorem 3.1. 

To conclude this Section some StatemeritS are given which might be of some use in 
the study of differential games. 

Let w, (r, 6) (to < T < 6) be a set of points w satisfying the condition that for 
any mixed strategy of the second player V = V (E, a~) a motion 

z [tl = z It; 7, w, u,, VI 
exists for which the inclusion 

{t,z[t]}~D for zGt<min{*,fi(~[*];~)) 

holds. Here, as before, 6 (X [ -1; ikf) denotes the instant at which the point p It1 = 
={t, 5 Itl} reaches the set M for the first time. 

Theorem 3. 2. If z,, E W, (t,,, 6), then the mixed strategy of the first player 
UC6 = U@) (t, 2) extremal to the system of sets w, (t, 6) (to < t < 6) ensures 
that the condition 

{t, z ftl} F: D for t,<t<min {+,S(~c[.l; M)} 
holds for any motion 

2 ItI = z it; t,, zo, U(‘), V,l 

If to e W, (t, 6), then a mixed strategy of the second player V, = V, (t, 2) 
and a number E > 0 exist such that the conditions 

rE (z i-1; D) <S, p ({t, 5 [tl}, M) > e for to < t <TO (z [.I; D) 
hold for any motion z [fl = 5 lt; to, x0, U,, V,l . 

Proof. Let M, be the union of the set M and a hyperplane t = 6 = const. Then 
from the detiition of the sets W, (t, 8) it follows that W, (t, 8) is an aggregate of all 
points {w} such that, from the position p = {t, w} , the set M1 is positionally absorbed 
by D at the instant 6. It can easily be now noted that the correctness of Theorem 3.2 
follows from Theorem 3.1 and from the definition of M,. 

Note 3.1. It is easily seen that the statement of Theorem 3.1 remains valid when 
the positions of the players in its formulation and in the definition of w (t, ti) are 
interchanged, i.e. the set W (t, 6) is defined as an aggregate of points w for which 
(3.2) holds for at least one of the motions z [t] = z [ 1; T, w, U, V,], irrespective of 
the choice of the strategy U of the first player; moreover, the strategies U@) and U, 
of the first player in the formulation of Theorem 3.1 should be replaced by the strategies 
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V@ and T/‘, of the second player, and the saategies V, and v* of the second player 
replaced by the strategies U, and U* of the first player. This is equally applicable to 

Theorem 3.2. 
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The accuracy with which a nonlinear control system with lag reproduces an arbitrary 
action belonging to a certain class of functions is examined. The maximum errors aris- 

ing in reproducing the action and their dependence on the parameters of the controlled 
object, and on the law of control used, are estimated. 

1. Strtemrnt of the problem, Consider a closed system consisting of a 

controlled object and a regulator, The purpose of this system is to reproduce , using the 

initial value of the object y (t) , a previously ~kno~ con~ollingaction r (t) whose 
rate of change 5’ (t) 5 ‘p (t), I’p (t)l < m, II: (0) = 0 (1-i) 
is bounded, belonging to the class of functions F. The quality of performance of the 

system, which is at rest at t & 0, will be characterized by the maximum error 

Ems(t) = max 1 E(t) 1 , e (t) = x (t) - y(t) tx f Ff 0.2) 


