948 A, P, Markeev

BIBLIOGRAPHY

1, Birkhoff, J, D,, Dynamic Systems, M, -L,, Gostekhizdat, 1941,

2. Moser,J., On curves invariant in the mapping of a torus which conserve the
area, Sb, perew, i obz, in, period, lit,, Matematika, Vol,6, N5, p, 51,

3, Arnol'd, V.I,, Small denominators and the problem of stability of motion in
the classical and celestial mechanics, Usp, matem,n,, Vol, 18, N86, 1963,

4, Levi-Civita, T,, Sorpa alcuni criteri di instabilita, Ann, mat, pura et appl.,
Ser, 3, Vol 5, p.221, 1901,

5, Siegel, K, L., Lectures on Celestial Mechanics, (Russian translation), M., Izd,
inostr, lit,, 1959,

6. Merman, G, A,, On the instability of the periodic solution of the canonical
system with one degree of freedom in the case of main resonance, Sb, "The
Problem of Motion of Artificial Celestial Bodies". M., Izd. Akad, Nauk SSSR,
1963,

7. Kamenkov, G, V,, Investigation of stability of periodic motions, Tr,Univ,
druzhby narodov im, Patrisa Lumumby, Teoret, mekhan,, Vol.15, N*3, 1966,

8, Mustakhishev,K,M,, On the questions of stability of Hamiltonian systems,
I1zv, Akad, Nauk KazSSR, Ser, Fiz, -matem,, N1, 1967,

9., Liapunov, A, M., Sobr,Soch,, Vol 2, M,,Izd. Akad, Nauk SSSR, 1956,

10, Landau, L, D, and Lifshits, E, M,, Theoretical Physics, Vol,1, Mekha-
nika, M., "Nauka", 1965,

11, Moser, J., Stabilitftsverhalten kanonischer Differentialgleichungssysteme,
Nachr, Akad, Wiss, Géttingen, Math, -phys,, K1,1Ia, N¢6, S, 87-120, 1955,

12, Markeev, A, P, , Stability of a canonical system with two degrees of freedom
in the presence of resonance, PMM Vol, 32, N4, 1968,

13, Markeev, A, P,, On the stability of a nonautonomous Hamiltonian system
with two degrees of freedom, PMM Vol, 33, N3, 1969,

Translated by J. J. D,

AN ALTERNATIVE FOR THE GAME PROBLEM OF CONVERGENCE

PMM Vol 34, N6, 1970, pp,1005-1022

N, N, KRASOVSKII and A, I, SUBBOTIN
(Sverdlovsk)
(Received July 24, 1970)

In this paper a new class of generalized mixed strategies of players is presented, related
to the problem of bringing a motion, under a control involving conflict,to a specified set
under a phase restriction. This class of problems is so wide that it includes strategies
which give saddle-point type situations in typical differential games, The contents of
this paper are related to the problems discussed in [1—4] and the discussions are based
on the extremal construction introduced in [5-7].

1, Consider first a motion under control involving conflict described by
dz/dt = f (¢, x, u, v), zlt) = z, (1.1)

where r is the n-dimensional phase vector of the system, © and v are the control force
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vectors of the first and the second player, respectively, and f (£, z, u, v) is a continuous
vector function satisfying the Lipshits condition in Z. It is assumed that the players can
only choose the controls u and v restricted by the condition

ue P, vel (1.2)

where P and ( are closed and bounded sets in the corresponding vector spaces,

In introducing the concept of mixed strategies of players and obtaining the motions of
the system (1, 1) generated by these strategies, the proposed definition of the strategies
corresponds to the following information given to the players: — at any instant ¢ > fo
the players know the actual position of the game p{t]={t, = [t} but have no knowledge
of the control chosen by the partner at this and subsequent instants,

It is considered that this class of mixed strategies is sufficiently complete in the sense
that for any initial time & >> #, and initial position py = {t,, z,} of the game, the class
contains either the strategy of the first player which guarantees that the motion (1,1)
will converge to a given set at the instant ¢ == { and at the same time guarantees that
a certain prescribed phase restriction will be fulfilled, or the strategy of the second
player which ensures that all motions(1,1) bounded by the given phase restriction will
evade the given set within the interval [z, #]. (This alternative is formulated more
precisely at the end of this Section), In Sects,2 and 3 below the description of the so-
called extremal construction [5~7] is given, which is used to prove the validity of the
alternative formulated in this Section,

This alternative enables the optimal strategies to be constructed which define saddle-
point type situations in the differential games, In particular the findings of this paper
may be used to study the following types of the game problems of dynamies;

1. A homing game problem with phase restrictions, Here a strategy must be con-
structed for the first player which brings the motion (1,1} to the given set in the shortest
possible time ensuring that a certain phase restriction is fulfilled,

2, A differential game in which the motion is described by Eq. (1.1) and the pay-
off is given by &

T=0@ 28D+ v 1ehar
ts
where ¢ (¢, z) and ¢ (¢, «) are given continuous functions and & = & (z [.]) is the instant
at which the point p[t] = {¢, #[¢]} reaches some prescribed set V for the first time,
3. A differential game with the payoff in the following form:

y=max @ (¢, z [thwhent, <t < P (=[]

where, as in the previous case, ¢ (¢, z) is a continuous function and & (z [-]) is the
instant at which the point p [t] = {¢, z [t]} reaches the prescribed set N.

The concepts of mixed strategies of the players may be introduced at this point allow-
ing the motions of (1.1) corresponding to these strategies to be determined, let J =
= U (¢, x)be a function defined for ¢ > ¢, and all z which generated a one-to-one
correspondence between the positions p = {f, z} of the game and the set U (¢, z) of
regular Borel measures p (du) [8]normedon P, i.e. p (P) = 1.

Since p (du) will be the only measures considered here, these will be called simply
the measures p (du)on 2,

The function I/ = U (¢, z) specified above defines the mixed strategy of the first
player and allows the motions of (1,1) generated by this strategy to be determined as
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follows,
Let A be some range set of nonoverlapping semiopen intervals

{ﬂci! Ti+1) (l == 0, 1, 2,..., “[0 = t*)
covering the semiopen line [f,, oo) . Then the approximate motion of the system

(1.1) generated by the mixed strategy [J = U (¢, z) of the first player, together with
the trivial strategy V¥ of the second player, and corresponding to the range set A will

be given by za lt]l = za Ity 8y, 2, U, V]
where Za [t] is an absolutely continuous vector function satisfying the following recur-
rence relations: dz, [1]

b F (t, zaltl; p (@4 p (%)) (1.3)

Zallel =zl =24 T,<<E<T®u (i=0,1,2,..)

atnearly all t 2> I, ,
Here za [t,] = z, is the initial condition for the motion
TA [t] = A [t; Lyr Ty U, Vr]
and F (¢, z; p (du)) is the convex hull of the set of all vectors of the form
F=f(t =, u, v)p (du)
where v & @ and p (du; p 17:])isa measure on P belonging to the set U (14, za [1:]).
Let the concept of generalized motion of the system (1,1) now be introduced. Denote
by ¢ (A) the quantity given by
6 (A) = sup; (Tisa — T3), i=0,1,2,... (1.4)
where T; are the boundary points of the semiopen intervals [t;, t;,,) of the range set
A, and let the absolutely continuous vector function
xz [t] = X [t; t*, T s Uv V’\;]
describe a generalized motion of the system (1.1) satisfying the initial condition
z [t,] = z, generated by the mixed sttategy U = U (¢, ) of the first player togeth-
er with the wivial strategy V _ of the second player, provided that the sequence of mo-
tions CCAk {t] = xAk [t; t*’ Ly, U7 V‘c] (k::i’:/:"")
exists such that the relation
lim xAk [t; t*, Ty, U, VT] = T [ty t*7 Ly U: V‘t]
k—oco
also holds on any finite segment [¢,, ¢*] uniformly and that the following conditions
are fulfilled: iy ¢ (A,) = 0, im z, = 24, k— oo

In the following discussion these generalized motions are simply called the motions
of the system (1.1),
Some properties of the set of motions
zlt] =z lt; ty, x4 U, V]

may now be noted, Thus,

1° this set is nonempty, and

2° the set of motions z [¢; ¢,, T4, U, V.l regarded as a collection of vector
functions x = z |¢] defined on some finite interval [¢,, ¢*] is compact in itself
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([91. p. 222) and depends on the initial condition z, semicontinuously from above, rela-
tive to inclusion,

From the latter property the following condition holds: if Z; — Z,as { — oo, and
the sequence of vector functions z [¢; ¢,, z;, U, V.l converges uniformly on [z,,
¢*] to some vector function &y [¢], then on the segment [¢,, t*] the vector function
x4 [t] coincides with one of the motions z [¢; t,, z,, U, V..

In ore particular case when the set U (¢, Z) consists of a single element, a2 measure
B (du), and does not depend on the position p = {t,x} of the game, the corresponding
motions will be denoted by z [t} = z [£; t,, 24 B (du), V.1

In this case the set of motions z [¢: ¢, z,, U, V.] coincides with the set of solu-
tions of the following differential equation in contingencies [10]:

da;gt] eF @, z{t];n(du), z[t]=2z, (1.5

The concept of the mixed strategy of the second player is introduced in a similar
manner, This is represented by a certain function V 4 V (¢, z) (here V (¢, x) denotes
the sets of regular measures v (dv) normed on (), and the motions of the system (1,1)
corresponding to the strategy V = V (¢, ) and the trivial strategy of the first player
U, ,are defined by z [t} = = [#; ¢t,, z,, U,, V1. The properties of the set z [t] =
= z [t ty, z,, Uy, V]are the same as those of the set z [t] = z [ 24, z,,U, V.l

The motions 2 [#; ¢4, 24 U, V.] coresponding to the pair of trivial strategies
and the motions x [#; ¢,, 2., U, V] generated by any two mixed strategies U —
= U (t, ) and V =V (¢, x) will also be utilized in the discussion, In this case we
shall regard as a motion « I¢; ¢,, x,, U,, V] any continuous vector function x [¢]
satisfying for almost all ¢ 2> 1, the requirement of inclusion

dzltl jdte F(t,z [t]), 2 [t,] = =4, t> £,

here F (¢, x) being the convex hull of the set of all vectors of the form f = f (¢, z,
u,v), where u & P, vex Q. The motion &[4 t,, z,, U, V] is defined in a similar
manner to that used for obtaining x [¢; t,, x,, U, V,] viz.,by taking z, [t] to
the limit,

Only now the relation (1. 3) for za [#] can be replaced by

d
ﬂ’?hm = SSi(t, za [t], v, ) p(@Qu; plT]) v(de; ply])

Taltul =24 TH<E< Ty, i=0,1,2, ... (1.6)
where
pdu; pleye U, zalul), vidy, plul) € V (v, 2a [])

This completes the formal representation of the strategies of the players and the cor-
responding motions of the system (1,1).

A brief explanation of the concepts introduced is as follows, Let us e, g, find the mo-
tion = [¢; ¢, z,, U, V], which was introduced above as the limit of a sequence of
approximate motions z,, [f] = xAkIt; ty, Tk, U, V], comresponding to piecewise conti-
nous measures
p(du; plul € U (1, xAkl'ri]) and v {dv; plyl) €V, Zp, [e:]) for v, <t < T

We note that the mixing of the controls u and »,defined over the interval [t;, 7;,1) by
the measures p (duw; p [t;)and v (dv; p [%;]), respectively, can be performed approxima-
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tely by mixing the controls « and v defined by

u {2 = 9 when te [t D), ;= 1, ., m®

vl = o when e, %), s =1, ..., (®

over time, The values of the vectors u and »®) and the system of nonoverlapping semi-
open subintervals [t%, v{*D) and [x{, ©{"*") covering the interval [, 7i,1) are defined
by corresponding measures u (du; p [1;]) and v (dv; p [1:]) , respectively,

In this way the motion z [#: ¢,,24, U, Vlcan be determined as a limit of certain motions
of the system (1.1) accomplished in a defined manner by the controls of the first and
second player mixed over time, It must be assumed, that the second (first) player is not
aware of the actual method of selection of the semiopen intervals [v ) t{*1)ang [x{*)t{**?)
although he may have a knowledge of the strategy U/ (strategy V) of mixing (relation
between the measures of the semiopen intervals [+{?, t{*D)and (It{”, 7{**V))and of the
values of u () corresponding to the measure

po(duy plvi]) S U (v, 2p0e,) (v (dvs p [T DEV (15, 24, (W)

It follows, therefore, that the mixing of the controls « and v must be independent (in
the sense assumed in the well-known game situations interpreted on the basis of the theo-
ry of probability), These assumptions correspond to the character of information described
above and which are available to the players, i, e, the player is ignorant of the realiza-
tion x [t} or v [#] of the controls chosen by his partner at a given instant (and later), and
only knows the position p {] = {¢, =[]} realized,

In addition the following may be noted, The set of motions z [#; ¢y, z,, U, V,] con~
tains any motion of the system (1, 1) satisfying the condition z {£,] = z4, which may be
realized with the strategy U/ = U (¢, z) chosen by the first player together with any
strategy of the second player, Therefore, when it is stated that a certain condition holds
for all motions z {t; s, z,, U, V.] it means that the strategy U == U (¢, x} guarantees
that this condition is satisfied irrespective of any permitted behavior of the parmer,
Similar statement can be made concerning the motions z [¢; ty, %4 U, V]

Let us now introduce some notation and formulate the alternative mentioned previ-
ously, Let z [t] by some motion of the system (1.1) and G a closed set belonging to
the vector space p == {#, z}. Denote by & (x [«]; G) the instant at which the point
p [t} = {¢t, x [¢]} first reaches the set G and assume that & (z [.]; G) = oo if the
condition p [t} & G does not hold for any t > £, .

In the following p ({f, «}, G) denotes the Euclidean distance between the point
p = {¢, z} and the set . The instant at which the inequality p ({¢, z [{]},G) >¢
becomes valid for some motion z [¢] for the first time is denoted by 1 (z [-]; G),
and the closed neighborhood € of the set G is denoted by G*, Therefore G* = {p =
=g+ q:gsG, |g]<e}.

Here and in the followng |/ ¢|| denotes the Euclidean norm of the vector 4.

The following statement expresses the basic result of this paper.

The Alternative, Let py = {f,, Z,} be the initial position of the game, M
and [ some closed sets in the vector space p == {{, z} and & > {; a finite number,
Then one of the following two statements is true ;—either

a) there exists a mixed strategy {J — U (¢, z) of the first player such that the
relations
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@], MLS, {t, z [t]} = D when Lh<t<O(z[.]; M)

hold for any motion
x [t] =X [t; to, Ly U: V'c]

i.e, for the motion z [t] = z [¢; ¢, z,, U, V] the condition {¢, z [¢]1} &= M will
become valid not later than at the instant ©, and the phase restriction {¢, z [t]} = D
applies throughout the motion of the point p [t] = {¢, z [¢]} from p, = {4, 2o} to
the set M, or

b) there exists a mixed strategy V = V (¢, z) of the second player and a positive
number & >> O such that the condition

p ({t, z 8]}, M) >e whent, < t<Cmin ¥, * (= [.]; D))

holds for any motion z [t] = z [¢; t,, x5, U,, V1.i.e. no motions z [t] = x [t; ¢,
Zy, U, V]exist satisfying the condition {¢, z [t]} & D¢ and reaching M not later
than at the instant 3.

2, Since the approach to the problems investigated in this paper is based on the ex-
tremal construction used in [5~7], the basic elements of this construction should be
defined,

Definition 2,1, Letthere be a one~to-one correspondence between all values
of ¢ belonging to some interval [,, n] in the phase space {z} and nonempty sets W (¢).
The collection of sets W (t) (f, << t <Cm) shall be called u-stable in M if for any
ol M), 2, & W(t,)and 8§ & (0, — ¢,] amotionz [t] = z [¢; ¢, T4,
U, v (dv)] can be found for any value of the measure v (dv) , satisfying either the
condition that z [t, + 8] & W (¢, + 6), or the condition that {r, z [7] } &= M
for some T [¢,, £, + 6l

Definition 2,2, Leta closed set G be defined in the vector space p = {t, x},
and a system of nonempty closed sets W (2) (£, << £ << M) be given, This collection
will be called v-stable in G, if for any ¢, & [y, n), z, & W (¢,) and § = (0,

N — £.] a motion z [¢] = z I¢; ¢, x,, p (du), V.lcan be found for any value of
the measure p (du) satisfying either the inclusion z [¢, + 6] = W (¢, + &) or the
condition {t, z[t]} &= G forsome 1 = [¢,, £, + 8.

Let a collection of closed sets W (¢) (¢, < ¢t < U) be given in the space {z} ,and
assume that these sets can, in general, be empty for some ¢t & [¢,, 9]. Now introduce
the notion of a mixed strategy U(® = U® ({, 2} of the first player extremal to this
collection of sets, Denote by ¥* (¢, z, s) the quantity given by

¥* (¢, z, s) = min maxSSs']‘ (¢, x, u, vy p (du) v (dv) =

v (dv) p (du)

= max minSS sS'F(t, x, u, v)p(du) v (dv) 2.1
e (du) v (dv)

where s is an n-dimensional vector and where the prime denotes transposition, and cal-
culate the maximum and the minimum over all possible regular Borel measures p (du)
and v {dv) normed on P and Q,respectively, The validity of (2,1) has been proved
previously e, g, in [11], p. 95, Let us assurne first that at the point £ & {£,, O] under
consideration the set W () is nonempty and let S (¢, z) denote the set of all vectors
of the form s° = w® (2) — z where w° (z) are the points of the set W (f) nearest to
z . (If £ & W (t),the set S (¢, =) obviously consists of a single null vector), When
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the set W () is nonempty, U® (¢, z) is defined as aggregate of all measures pn° (du)
satisfying the condition
min {577 ¢, 2, u,v) 4° (@) v @) = 9° (1, 2, ) (2.2)
v{dv
for at least one vector §° from S (¢, z) .
The existence of such measures follows from the relation (2.1). If however the set
W (t) is empty for some ¢ & [¢y, 8], then it must be assumed that U® (¢, x) is com-
posed, for any value of z, of all possible regular Borel measures p (du) normed on P.
The function U = U®) (¢, x) is thus defined for all z and for ¢ & [f,, 0] ; it
also satisfies the condition of weak semicontinuity in z.
Let the mixed strategy of the first player, as given by the function U®) = [ (¢, 2z),
be extremal to the system of sets W (t) (¢, << t << ).
The mixed strategy of the second player V® = V) (f, x) , extremal to some system
of closed sets W (t) (¢ << t << 9) ,is defined in a similar manner, When W () is
nonempty, the set V() (f, z) is composed of the measures 4° (dv) satisfying the con~

the condition . o
min{ {57 7 (1, 2, u, v) 0 (00 v @) = 4 (2, ) 2.3)
w(du)
which must hold for at least one vector s° from S (t, 2), The quantity ¥, (¢, z, s) is
given here by
P, (£, 7, s) = max minSS s'f(t, x, u, v) p(du) v {dv) =
v (dv) p(du)

= min max SS s'f(t, x, u, v) p (du) v (dv) (2.4)
w (du) v {dv)

where as before i (du) and v (dv) denote all possible regular Borel measures normed
on P and (), respectively,

The following two statements are valid,

Lemma 2.1, If xy & W (4,) and the collection of nonempty closed sets W (t)
(%o << t << m) is u-stable in M, then the mixed strategy of the first player U© =
= U® (¢, x) extremal to the system of sets W (£) (£, << £ << m) ensures that the

condition z [#] =W (t) when &, < i<< min {'f], ¢ (x {']; M)} (2‘5)

holds for any motion z [t] = z (¢ &, x,, U®, V.].
Lemma 2,2, If the collection of nonempty closed sets W (¢) (o << t << ) is
v-stable in G and 7, & W (f,), then the mixed strategy of the second player V) =
= V® (t, z)extremal to the system of sets W (t) (¢, <C ¢t <C 1) ensures that the
condition z[tl & W (¢) when t, < t < min {n, ¢ (z [.]; G)}
holds for any motion z [t] = z [¢; ¢y, 24, U, VOI.

Proof of Lemma 2,1, Let z[t] = z[t; ty, z4, U, V.] be any motion corre-
sponding to the strategies U( and V.. It will be shown that condition (2. 5) holds for
this motion, Let Zay [t] {t, <X t < M) denote a sequence of approximate motions whose
Limit is the generalized motion under consideration. i.e.

zp, 1 = 25, 18 to, 2x, U, V] (tly <t <)
Moreover,

i A)=0, li = z9, li t}— t =0 2.6
JLim s (Ay) klggo o = 2o lim ‘,o‘é‘?‘én fzft] —z4 [t11D (2.6)

It can be easily shown that the requirement (2, 5) holds for the motion z [¢] under
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consideration is equivalent to the statement that for any arbitrarily small « > 0 a num-
ber K can be found such that the relation

Ta, [(leW* () when t, < ¢t << min {n, & (4,11 M%)} 2.7
holds for all % > K for the motions x Ap [¢] . Consequently the proof of Lemma 2,1 is
reduced to a proof of the above assertion, Let us introduce the quantity g, [¢t}=0p (z Akm'
W (2)), remembering that p (z, W) is the distance between the point z and the set W,
It will be shown that the quantity &, [¢] at sufficiently large k , doesn't exceed any pre-
determined number « > 0 for all t<[t,, min {y, ¢ (:cAk [-1; M*%)},,1i.e, condition (2,7)
holds,

Thus, let us see how the quantity e [¢] varies when 7" < ¢t < tf¥), (¥ <y where

[x{"), ©{¥)) are semi-intervals of the range set A,.The motion z, ] for ¢t € ", <{}))
is given by dz, [!]
s
——={On),  fO[IEF (tay, (1) b @i p[¢O])

we (@du; p [#P) € U9 &, 2, D))
i, e, the measure u° (du; p [1:('{) 1) satisfies the condition (2.2) in which the vector s° is
given by ) [+ ] (2.8)
where w°is a certain point of the aggregate of points nearest to T, [+{"] and belonging
to the set W (z{). Assuming now that the inequality
e [e0] = 0" — 25, [ =i ()] > 0 (2.9)

holds, let v, (dv) be the measure on @ conveying the minimum value to (2, 2) for
t=1" z2=za, [1{"] and & = & [¥{V], i, e,

g = s° [tgk)] = w° — TN

W o 017 @, 20, (401 w01 0 @ p (D W @) =97 (6, 24, [0, 100D >
>SS L1 @9, 2y [7P), . 0) B (du) vo o) 2.10)

Using the condition of u-stability of the system of sets W () (¢, <<t << m) ,and assum-
ing first that the point p [#] = {t, « [¢]} does not reach the set M when ¢ & [¢{") ()|
for any motion z [t] = z [¢; ©{"] w°, U, v, (dv)] , we find, that a motion z, {t] = z [&;

¥¥, w°, U, v, (dv)]exists such that
z, K e wal) (2.11)
This motion is given by
dz, [t]
;t[ = fo[t] =, [Tgk)] =u°, [ [t]=F (L, z, [t]; vo(d?))

The inequality
on 1)) = p (ea, 58, WD <las, B — =, 6N 242)

follows from (2,.11).
Let us secondly estimate the distance between the points z,, [Tﬁﬁh and z, [t{))

i1
Here the following relations shall be used which follow from the fact that the Lipshits

condition holds with respect to Z for the right~hand side of (1,1)

F(t, 24 Az;p @u)E FP (¢, 23 p (du))(ﬂ =Afaz] ) (2.13)
F(t, z + Az;v (dv) € FP (t, 2,v (dv)) \(A = const > 0)

where FPdenotes the p-neighborhood of the set F, The relations (2.13) hold for any
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measures p (du) and v(dv) for all ¢ and =z.

Using (2, 13), and taking into account the fact that the sets F (¢, ; p (du)) and F (2,
x; v (dv)) are convex and depend continuously on ¢ , we obtain the following expressions :

zp, [TE) = 25, [P1+ 196 + 0 (6(9) 2.14)
7y [51] = w* + 1,89 40 (8()
where @ " . )
80 = v{f) — M, 19 = F (¢(P, za, [T0) 1 @us p [{P]))
fo € F ({9, w5 v, (dv)) (2.15)

The symbol o (§) denotes a higher order infinitesimal in 8. By (2. 8),(2.9) and

(2.12) relations (2, 14) yield the following estimate :

201 <hza (71— 2 [P = 1 [¥{P1P 4 26095 [x{0] (, — 1) + 0 (6{F) (2.6)

Finally the scalar product s* [#{"] (f, — £*)) will be estimated, From (2.13) and
(2.15) it follows that a vector /* € F W 2, (¥ v (dv)) exists, satisfying the ine-
quality | f, — I A w® — Tay [fg‘)] | = Ajjs® [1§")]ll[. Therefore the relation

is valid, © [P < AP+ A e [P 2.47)
At this stage it should be noted that for any vector f & F (¢, z; u (du)) (f € F (¢, =;
v (dv))) a measure v (dv) (u (du)) can be chosen such that the equation

holds, f=35Fe 2w ov)p @) v (@)
When this is taken into account, the scalar products s> [%{¥) ] £¢) and s [+{¥)] f* can
be written in the form
o (1010 = ({16017 (@0, 25, (1P), w, )00 @i p [0 v, @)

(e = 11011 (0, 24 (9,0, 0) 1, @) vo @),

where u, (dv) and v, (dv) are some measures on P and Q ,respectively, Since the meas-
ure p° (du; p [117]) belongs to the set U (x{*) 2, [x{¥]), i.e. it satisfies the condition
(2.2), while the measure v, (dv) is given by (2.10), the following inequalities hold ;

' [/ > 9t 1, 24 [1B)], 6 [7D])
o [0 12 <wr e, 24, (W01 & (1)

From (2,17) the latter yields the estimate
s [0 (fa — 19) <M s° (101 P = Aef [7{7] 2.18)
Substituting (2. 18) into (2,16) we obtain the inequality

e [t < e2 111 4 25{ 1) + 0 (617)

The above discussion clearly shows that the ratio o (65“)/ 6?‘) which depends, in gene-
ral, on the position p [t{"] = (1{*) Za, [v{"]} of the game, tends to zero as &" — 0
uniformly in p € T,where I' is an arbitrary bounded region,

Furthermore, this statement remains valid even when tfﬁ is replaced by any ¢ from
the interval [v{®), —cg:)l], Thus we have

e} [ < ed 11 (1 +26(" &) + 0 (") when t& [{?, 7{{]] (2.19)
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We note that this inequality is obtained on the basis of the assumption that the condi~
tion {t, =[]} & & when i & [tﬁk), -rﬁ‘{] is satisfied for any motion z [t]= = [¢; t}"’,
woi T Vo (dv)]-

Two cases are possible : either the latter assumption holds for the approximate motion

25, [t] over any interval [+{", t{})), " < n, or there exist some interval [T(k)v T,(ﬂ),
©h < mwhen this assumption breaks down for the first time, In this latter case, however,

1t may be easily shown that the following relation holds for some ¢, & [1:5 . v}ﬁ)

(ty <M) P ({ter ®ay (141}, M) <o [1(7] + @ (8 (2.20)

(@) —0 a 8§-0
and the estimate (2,19) remains valid for all {= 0,1, ...,; — 1,
Let an arbitrary number « >> 0 now be chosen, Using the estimate (2, 19) and taking
into account the fact that lim g [t,] = O which by virtue of (2, 6) follows from the
f»00

condition z, & W (i), it can be proved that a number X > 0 exists such that for all
k > K the inequality )
g, [t] <Ye as f, << t < min éy, 't?‘)) .21}

holds, ® (5§k)) < @ (0 {AR))g Yo

Consequently, from the definition of ¢, [f] and by virtue of (2.20), condition (2, 7)
holds, This proves the validity of the statement made at the beginning of this proof and
thus completes the proof of Lemma 2,1,

Lemma 2,2 is proved in a similar fashion,

8, Let us now obtain a system of sets W (¢) maximal in some particular sense, pos~
sessing the property of y-stability in M. The study of such a system will establish the
validity of the alternative expressed in Sect. 1,

Let % (z [.]; 1, ¥) denote a functional defined on continuous vector functions x [¢]
<<t ) given by

% (z[-]; ©,9) = min, p ({t, z [¢]}, M) + max, p ({¢, z}, D)y  (3.4)
where the minimum and the maximum are computed over T < ¢t & ¥ and T < ¢ <
<min {4, ¥ (z [-]; M)}, respectively.

Wenote thatthe functional % (x.]; t,¥]is lower semicontinuous, i, e, for any con-

tinuous vector function x, [t} (vt <<t << ¥) and for any ¢ > 0,values of § > 0 can
be found such that the inequality

%(zl-L1,9)>%(z, [-];1,8) — =
holds for any vector function z [#] (v <C ¢ «C §) satisfying the condition
max; [z [f] — 2, [F1|<8  xr<i<®

Definition 3,1, We say that the set Jf is positionally absorbed by [} from the
position p, = {f., Ww,} and the instant {§ if for any mixed strategy V = V (¢, z) of
the second player, a motion z [t] = z [f; £, w,, Ux, V] can be found such that

x(z[1;t,,9) =0 (3.2)

ie. 9(zl.); M)V and {t, z [t]} =D forall t = 8, ¢ (.1, M)} .

Let W (¢, 9) denofe the set of all points w such that the set M is positionally absorbed
by D from the position p == {¢, w} at the instant 9.
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Let us consider some properties of the sets W (¢, #). First the following auxilliary
statement will be proved,

Lemma 3.1, Let p, ={ly, W.} be some position of the game, where {, < ¥
and {t,, w,}& D. If both a measure v, (dv) on Q and an instant t* & [t,, 4]
exist such that the conditions

o ({t z[t]}; M) >0 when t e 2, t*] (3.3)
T [t*]E W (t*.9) (3.4)

hold for any motion z [t] = z [¢; ty, wy, U, v, (dv)] ,then the set W (i,, ©)
does not contain the pointiv,,.

Proof, From the definition of the set W (¢, ©) it may be inferred that the validity
of Lemma 3,1 will be established if it can be proved that a mixed strategy Vv, = V, (¢,
z) of the second player exists such that the inequality

% {z[-]; 1, 8) >0 (35)
holds for any motion z [t} = z [t; £,, we, U, VI,

The existence of this mixed strategy V, is proved as follows, First, we assume that
some system of sets W, (t) (1, < t < ) possessing the properties set forth below exists,
Then we shall show that in this case a mixed strategy of the second player extremal to
such a system secures the validity of the inequality (3, 5), Finally, we shall show that
when the conditions of Lemma 3,1 are satisfied, a system of sets W, (£) (t, <t < §)
possessing the required properties exists,

Thus, we assume that there exists a system of sets W, (1) possessing the following pro~
perties,

1°, The sets W, (t) are nonempty and closed for ¢, < t <1, where m is a number
which satisfies the inequality 1 (¢ . If n <&, the equality

pn, wh D)=2e>0 (3.6)
holds for any point w & W, (1) .
2°, The i 1
memaRY gt wh M >e>0 (3.7
holds for any point w e W, (({ty <<t <),
3®, The point w, belongs to the set W, (t,).
4°, The system of sets W, (2) (¢, <C ¢ < n) is v-stable in G , where G is an aggre~
gate of points satisfying the condition
pift, 2k D) =e>0

We shall show that the inequality % (z |-1; t., ¥) > 2 > 0 holds for any motion
z{t] = z{t; ty, w,, Uy, VO], (Here V' = V¥ (¢, z) is the mixed strategy of the second
player extremal to the system of sets W, (1) (t, <t << 9) »
Indeed, by virtue of Lemma 2, 2, the condition
slle w, ), t, <t<<minfy, @[} Gh (3.8)

holds for any motion z {t] = z [# £, w,, Uy, yiey,
Let us assume that min {n, ¢ (z [.]; G)}=10, then (3.8) and (3.7) yield the inequality
ptzlell, M) >e>0 for t, <t ® (3.9)

If, on the other hand, & = min {n, ¥ (z [-]; &)} < ¥, then by virtue of properties 1°,
2° and 4° from the condition (3, 8) we have the following relations:
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pltg, 2}, MY> e >0 for te [t &

pUE z[EB, D)=¢e>0 (3.10
Thus either (3, 9) or (3.10) holds for any motion z [t] = z [t; t,, w,, U, V®]; there-
fore the inequality %(z[-]; 8, ) >e>0 (3.14)

holds for any motion z [t] = z [t, t,, w,, U, V9] .

It may also be shown that under the conditions of Lemma 3.1 a system of sets W, (2)
(t, <t < m)may be constructed with the properties 1° — 4* listed above,

Let X be the set of points z [#*] = z [¢*, ¢,, w,, U,, v, (dv)] Corresponding to every
possible motions z |f] = =z [# ¢, w,,U,, v, (dv)}. The set X is bounded, closed, and by
virtue of (3, 4) the intersection of X and W (¢*, §) is empty, This means that for any
point w & X ,a mixed strategy v, = V,,(t, ) of the second player can be found such
that the inequality % (z[-}; ¢*, ¥) > U will hold for any motion z ¢} == =[¢t; t*, w, U,
Vwl. The set of the vector functions z [t t*, w, U, V,l will be compact in itself,
and the functional x(z |- ]; ¢*, ¥) will be lower semicontinuous in z [-]. A number
n {(w) >> 0therefore exists such that the inequality

@[] t* 8> a (w) >0 (3.12)

holds for all motions z [t] = z [t; t*, w, U,, V),

Since the set of motions =z [i; 1%, w, U,, V] depends on the initial condition = {*1=w
semicontinuously from above with respect to inclusion, from (3, 12} it follows that the
relation @[t >V (w) >0
holds for all points x*satisfying the inequality [z* — w | <{r(w) (where r(w) is a positive
number) and for any motion z [t} = z |¢t; ¢*, z*, U, V,].

A set of spheres

R(w, rw)={zie—w|r @), r@w>0
covers the closed bounded set X, and from this cover we can select a finite subset
Ri=R (w, r(wm)={z:|z— w| <t wy)},
XCUR (i=1,...,m (3.13)

In the following the strategies V,, =V, (t, z) corresponding to the points w; {t = {4, ...,
»++s m) will be denoted simply by V; = V; (¢, z). The aggregate of all motions z{t] =
=z [t 1%, a*, Uy, V3] (#* < ¢ < 9) corresponding to all possible initial conditions
z [1*] = z* € R; will be denoted by X;[:*, 0.

The symbol X [¢t*, ] will denote the set of all vector functions z [1] (* <t < )
defined by X [t*,0]= U X, [t*, 8] G@=1,...,m 3.1

The set of motions z{#; ¢*, *, Uy, Vi] (t* < ¢ << @, i =1, ..., m) is compact in itself
and depends on z* semicontinuously from above with respect to mclusion, therefore the
closure property of the sets R; implies that the sets X; [#*, ¢] and X [¢*, &) are compact
in themselves, From the structure of these sets it follows that the inequality

(x|} t*, ) >a* >0 (3.15)
holds for any vector function z {¢] (¢* < ¢ < ®) belonging to the set X [*, 9], Here
a* = min {0 ()} for i =1, ..., m.
Let X [t,, ¥] denote a set of all continuous vector functions z [¢] {t, < ¢ < ¥) which
coincide with some of the motions z [¢; ¢,, w,, U, v, (dv)] whent, 2 < t*and
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belong to the set X [1*, ¢] when t* <t < ¢ From (3, 3) and (3, 5) it follows that the
inequality X (@[] ty, ) >a, >0
holds for any vector function =z [¢] (¢, < t < #) belonging to the set X [t,, €],

Using the fact that the set X [¢,, ] is compact in itself together with the latter ine~
quality, it may be deduced that at least one of the following two relations hold for any
vector function x [t] (¢, < ¢t < ®) belonging to the set X [¢,, ®] :

max;p ({t,z (4}, D) >e for t, <t<min{®, & @[ M)  (3.16)
ming p ({2, z[e}}, M) >e for t, <t < O (3.47)

where & > 0 is a certain positive number,

Let W, (1) be a set of points belonging to the phase space {z} defined as follows:
a point w belongs to the set W, (r) if and only if a vector function =z {¢] (t, <t < 9)
exists, belonging to the set X {z,, ¥] and satisfying the conditions

zixl=w, maxp (s, z[t]}, D) <<e for t,<IXT (3.18)

The system of sets W, (v} (3, < T {) so constructed may be shown to possess the
properties 1° — 4° listed above. Let denote by 7 the upper bound of the numbers 7 < ¥
for which the sets W, (z) are nonempty, In this case the set W, (n), as well as any of the
sets W, (1) for t, <7 <{ %, may be shown to be nonempty,

Indeed, let 7, (k= 1, 2, ...} be a sequence of numbers converging from the left to
1 and let the set W, (v,) (¢ = 1, 2...) be nonempty,

Consider a certain sequence of points wy

wy € W (1) k=1, 2, ..)

Each point wyhas a corresponding vector function z, [¢] (¢, <C ¢ < &) belonging to
the set X [#,, ©] and satisfying the condition

zp [tp) = wy, max,p ({2, z, [2}, D) <<e for 1, <I< Ty (3.19)

Out of the sequence vector functions z; [¢] (¢, < t < ®) now choose a subsequence con-
verging to some vector function z, [¢] (¢, <X ¢ < ¥) also belonging to the set X [¢,, 8],
Taking into account the fact that T, — M as k— oo, from (3,19) we obtain

Ty Il = w,, max;p ({t, z, [}, D) <e for 2, <t

Thus a point w* = z, [n] belonging to the set W, (n) exists, showing that W, (n) is
therefore nonempty, It may easily be shown that any set W, (1) for ¢, < 7 {1 will also
be nonempty, Closure of the sets W, (7) (¢, < v < 1) can be verified using arguments
similar to those employed above to show that W, (n) is nonempty, When 1 < 9, the
definition of 1 as the largest number of those T for which W(x) is nonempty yields the

following relation s max;p ({t, z [}, D) =p (tn, znl}, D) =&, £, <t<n

where z [1] {t, <t < 8§) are the elements of X [t,, ®] which, by (3, 18), correspond to
the points w & W, (1). The last equation therefore implies the correctness of (3, 6)
which verifies the condition 1°,

Condition 2° follows directly from (3,16) —(3,18), The inclusion w, & W, (z,) fol-
lows from the condition {t,, z |¢,]} & D and from the relation =z {t,] = w, which obvi-
ously holds for all elements of the set X [¢,, 9]

To confirm that condition 4° holds for the system of sets W, () constructed we assume
that w is any point belonging to the set W, (1) (¢, < T <7m), p, (du) is a certain measure
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on P, and & is a number satisfying the condition 0 << § n — 7. It can be shown that
a motion z* [t] = z {t; 7, w, p, (du), V], (t < t < v+ 8) exists for which one of the
following two conditions holds:

S r+8le W, v+ 8) (3.20)
max p ({t, z* 1]}, D) >e for t <<t <t + 6 (3.21)

Let z, [#]*denote a vector function belonging to X [t,, ¥] and corresponding, by virtue
of (3,18), to the point w, i,e, satisfying the conditions

max; p (§t, z[t]}, D) <e for 4, I
7y [t =w (3.22)

It can be shown that amongst the motions « [£; T, w, p, (dx), V.] such a motion z* [¢]
exists that the continuous vector function
z, [t} for L, <t 7
z{tl = &
z, (81 for 1<

is an element of the set X [z,, ¥]. Then, in this case for the motion denoted by z* [] =
=z [#3 v, w, p, (du), V], one of the conditions (3. 20) and (3.21) must hold,

Indeed, if max,; p ({2, 2* 7]}, D) < e for v <t < v+ 8, then by (3, 22) and the defi-
nition of the set W, {t) either the inclusion (3,20) or the inequality (3, 21) holds,

The fourth property of the family ofsets W, (¢) (¢, << ¢t < n) is thus verified and this
completes the proof of Lemnma 3,1,

Lemma 3,2, Everyset W (¢, ®) (f, << t << ) is closed, The sets W (¢, 9)
(to << t << ) satisfy the inclusions

W8 oD*(@), Dt N M* () W(t0) (3.23)

Here D* (t) and M* (¢) are closed sets in the space {2} and are defined by

D* (t) = {a: {t, z} = D}, M* (1) = {z:{t, z} & M}

The validity of inclusions (3,23) follow directly from the Definition 3,1 and hence
it only remains to show that the set W (¢, #) is closed, Let us assume that the point w,
does not belong to the set W (¢,, 8) (t, € [¢,, 8]). This means that a mixed strategy
of the second player Vv, = V, (t, 2) exists for which the inequality x (z [-]; ¢,, :)> 0
holds for any motion z [t] = z [£; ty, Wa, Uy, V,l-

The set of vector functions z [t; ¢,, w,, U, V,] (¢, <t < 9),compact in itself,
depends on the initial condition w,, semicontinuously from above with respect to inclu-
sion, and the functional » (z[-1; t,, 9) is lower semicontinuous ; therefore ¢ > 0 exists
such that the inequality % {(z [-]; ¢,, #) > 0 holds for any meotion z [¢; ¢,, w, U, V]
where | w — w, | < e. Consequently a e-neighborhood R (w,, &) (¢ > 0) can be found
for any point w, & W (t,, ) such that R (w,, &) N W (t,, ®) = &, i.e, the comple-
ment of the set W (t,, ®) is open and hence the set W (t,, #) is closed thus proving
Lemma 3, 2.

Let us denote, as before, a closed sphere of radius r, with its center at the point 2y, by
R (z,y, r). The following statement holds,

Lemma 3,3, If z, & W (4, ¥), then for any r > 0 a function 1 (r) (£, <
< 1 () << ¥) may be found for which the following conditions hold ;

1) every one of the sets W (¢,®) N R (x,, r) is nonempty when £, <X t << v (1)

2) elther p(zo, W (n (1), ) = r
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or
W (a(r), ) N R (20, 1) = M* (n (1)) = {z: {n (1), z} = M}
3) the system of sets W (¢, &) (t, <<t << (1) is u-stable in M.
Proof, Let ¥, be the upper bound of all T satisfying
T<’ﬂ', W(ty '&)ﬂR(Icos T'):#lf) for tE{fo, "C}

The set of these numbers T is nonempty, since t = ¢, satisfies the above requirements,
We shall show that ©, may be taken as q (), i, e, the number =, satisfies the Conditions
1) = (3.

First it is necessary to confirm that Condition (1) holds, For this purpose it is sufficient
to show that the set W (v, %) N R (zy, r) is nonempty, Let 7, (k= 1, 2, ...) be a
sequence of numbers converging to 7, from the left, Every set W (v, &) [} R (zy, 1) (k =
=1, 2, ...} is nonempty and the sets are all equally restricted, therefore a sequence of
points wy, w, € W (tx, &) N R (zy, r) (k = 1, 2, ...) can be selected which will con-
verge to some point w,.

Obviouwsly w, € R (z,, r), it will be shown that w, & W (r,, 9). Assume the opposite
is true, i, e, w, & W (t,, ). Then by Lemma 3,2 it follows that & >0 exists such
that

R (w*y 3) ﬂ W (1"#’ l&) = ¢ (3'24)
holds,
Since the points pjy =={7s, w,} belong to the set D (see (3,23)), the closure of D
implies that [ty w3 > D (3.25)

From (3,24),(3. 25) and (3.23) it follows that the point p, == {t,, w,} cannot belong
to the set M. Therefore the closure of M implies that
P ({ter i, M) >0 (3.26)

Let v (dv) be some measure on Q. From (3,24) and (83, 26) it follows that for suffici-
ently large % the conditions

4 ({tv z [t]}y M) > 0 for t& [Tk, ’5'*]
z h“} E€R (ww &}, Ed [1.] = (’1‘.“, ﬁ)

hold for any motion z [t] = z {t; ©y, wp, Uy, v (d0)] ., Therefore, by Lemma 3,1, the
relation wy, & W (¥, ©) holds for sufﬁcientlfr large k., The contradiction obtained
proves the validity of the inclusion

w,E Wix,, 8) ) R (zg, 1)

Consequently Condition (1) holds for the number %, = 7 (v}

We shall now verify that Condition (2) is satisfied, Again assume the opposite, i, e,
suppose that a point w, € W (v,, 8) [\ R (z,, 7} exists for which the relations

fwe — | <1, w, & M (t,)

hold simultaneously and the second of these includes the case when the set M (z,) is
empty, From the definition of the number v, a sequence of numbers ¢, converging to
7, from the right exists such that the sets W (t,, ) N} R (zq, r) (k = 1, 2, ...} are empty,

Thus the following relations may be written

ty > Ty lim ¢, = 7, With, 9) N R (zg, 1) = ¢

k—son

lwe — 2l <r, P(Te w}, M)>0
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et v (dv) be some measure on ¢ . Then the above relations imply that for sufficiently
large % the conditions pte, z[th, M)>0 for ¢t € [ty t
"I [th] — Ty " < r, i- e, z [tk] & w (thy 0)

hold for any motion z [t] = z [#; T,, Wy, Uy, v (dV)] .

Consequently, by Lemma 3,1, w, & W (r,, #) which contradicts the assumption,
This contradiction proves that Condition (2) is satisfied for 1, = 5 (r).

This leaves only Condition (3) to be proved, Again assume that it does not hold, i, e,
that numbers ¢, & {z,, 1,), 8§ € (0, 7, — ¢,], a point w, & W (¢, #)and some measure
v, (dv) exist such that the relations

pltt, =[]}, MY>0 for t, <t<<t,+ 6 (3.27)
zlt, + 8l W, + 6, ©)

hold for any motion z [t] = = [t; t,, w,, U,, v, (dv)]. By Lemma 3.1, from (3,27) it
follows at once that w, & W (t,, #). This contradiction proves that Condition (3) holds,

Setting 7 (r) = 7, we find that v, satisfies Conditions (1) — (3) formulated in Lemma
3. 3, thus proving the latter,

Lemmas 3,2 and 3, 3 may now be used to prove the following theorem, from which
the alternative stated at the end of Sect.1 immediately follows,

Theorem 3.1.1If 1y & W (¢,, §), then the mixed strategy of the first player
U® =U® (t, z) exttemal to the system of sets W (£, ¥) (f, <t <) guarantees
that the conditions

Tzl My<®, {t,zil} =D fo t< |, ¢ (z1-]; M)

are fulfilled for any motion z [f] = z [¢; ¢, z,, U@, V,l.
If on the other hand x, & W (¢,, ©¥), then such a positive number & > 0 and such
a mixed strategy of the second player V, = V, (f, Z) both exist, that the condition

{t, z [t]} &£ M for t <t<min {9, t* (z [.]; D))}
will hold for any motion z [t] = z [¢; #;, %4, U, V,l.
Here T* (7][-]; D) denotes the instant at which the relation p ({t, z [£]}, D) = ¢
first becomes valid,
Proof, let z, & W {#;, §) and let a sufficiently large number r be chosen such

that the condition max, |z lt] — 2|l < 7 for to <<t < B (3.28)

holds for any motion z [t] = z (t; to, 2o, Uy, Vol »

By Lemma 3,3 we can find a number 5 (r) € I¢,, ¢] corresponding to r which will
satisfy Conditions (1) — (3) of this Lemma,

Now consider a system of sets W (¢, §) (¢, < t < n ()} which, by virtue of Lemmas
3.2 and 3, 3, satisfies all the conditions of Lemma 2,1. By Lemma 2, 1, the relation

z(tle W) for to<t<<min(n(r), & (x[.]; M)} (3.29)
holds for any motion z [¢] = x [¢; ty, 2, U®), V] .
We shall show that & (z [-]; M) < n (). Indeed, if p (zo, W (n (r), B)) = r (see
Condition (2) of Lemma 3, 3), by (3,28) and (8, 29) the following strict inequality
& (= {-1; M) <7m (r) will hold; if, on the other hand, the relations
Wm@,NNR &, nTM*( (D) and min {8 z[-1; M), nON}=n
are valid, then by (3, 28) and (3, 29) the inclusion
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sl eWn@), )N R (@, nC M ()

follows, i, e, in this case ¢ (z [-]; M) = n (7). It follows, therefore, that the inequality
9 (z[-]; M) <n (r) < 9 holds for any motion =z [¢] = z [¢; ¢, zo, U\, V.]. The phase
restriction that {¢, z [¢]} € D for all ¢ € [0, ¢ (« [-]; M)]) now follows from (3,29) and
from the inclusion W (z,8) C D* (¢) (see Lemma 3, 2), This proves the first statement
of Theorem 3, 1),

Let now zo & W (t5, 9). The definition of the set W (¢, #) now implies that a mixed
strategy of the second player V, = V, (¢, z) exists such that the inequality

% (z[-]; £, 8) >0 (3.30)

holds for any motion x [t] = z |¢; tg,2, U., V,l.Since the set of motions z [¢; to, zo, U_,
V.l is compact in itself, (3, 30) implies that a positive number & > 0 exists such that
the relation {t, z [¢]} & M® for all # < ¢t <C min {®, t*(z[-]; D)} holds for any mo-
tion z (t] = =z ¢; to, =y, U_, V,}. This proves the second statement of Theorem 3.1,

To conclude this Section some statements are given which might be of some use in
the study of differential games,

Let W, (1, ¥) (£, <<7 << ) be a set of points w satisfying the condition that for
any mixed strategy of the second player ¥V — V (¢, z) a motion

z(tl =z gy, w, Uy, V]
exists for which the inclusion
{t,z[t]} =D for 1 <t<min {4,9(z [.1; M)}

holds, Here, as before, & (x [-]; M) denotes the instant at which the point p {t] =
={t, z [£]} reaches the set M for the first time,

Theorem 3,2, If 2y & W, (4, 9), then the mixed strategy of the first player
U® = U® (t, x) extrtemal to the system of sets W, (¢, 8) (¢, << t << @) ensures
that the condition

{t,zltl} =D fo <t min {0, ¢ (z[.]; M)}
holds for any motion
z[t]l = z [t t,, g, UD, V]

If o & W, (¢, 9), then a mixed strategy of the second player V, = V, (¢, )
and a number & > ( exist such that the conditions

(z[-1; D)<Y, p({t, zltl}, M) >e for t, <t <18 (z[.]; D)
hold for any motion z [t] = z l¢t; ¢y, zy, U, Vil

Proof, Let M,be the union of the set M and a hyperplane ¢ = ¥ = const. Then
from the definition of the sets W, (¢, &) it follows that W, (¢, ®) is an aggregate of all
points {w} such that, from the position p = {¢, w}, the set M, is positionally absorbed
by D at the instant §. It can easily be now neted that the correctness of Theorem 3.2
follows from Theorem 3.1 and from the definition of M,.

Note 3,1, Itis easily seen that the statement of Theorem 3,1 remains valid when
the positions of the players in its formulation and in the definition of W (t, ) are
interchanged, i. e, the set W (v, ) is defined as an aggregate of points w for which
(3.2) holds for at least one of the motions z [¢] = z [¢; 7, w, U,V ], irrespective of
the choice of the strategy U of the first player; moreover, the strategies U® and U,
of the first player in the formulation of Theorem 3,1 should be replaced by the strategies
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V¢ and V¥ of the second player, and the strategies V., and V* of the second player
replaced by the strategies [/, and UU* of the first player, This is equally applicable to
Theorem 3,2,
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The accuracy with which a nonlinear control system with lag reproduces an arbitrary
action belonging to a certain class of functions is examined, The maximum errors aris-
ing in reproducing the action and their dependence on the parameters of the controlled
object, and on the law of control used, are estimated,

1, Statement of the problem, Consider a closed system consisting of a
controlled object and a regulator, The purpose of this system is to reproduce , using the
initial value of the object y (), a previously unknown controlling action Z {#) whose
rate of change z (t) = g (8), ifP BH<<m, =z (0) =0 (1.1)

is bounded, belonging to the class of functions #, The quality of performance of the
system, which is at rest at ¢ < 0, will be characterized by the maximum error

Emax () = max|e(®)|, e{)=z () —y(?) el (1.2)



